
LINEAR HOMOGENEOUS TRUSS



1 Truss structures

A truss is a mechanical element whose dimension in one direction – the truss axis – is much
larger than the dimensions in each direction perpendicular to the axis. A truss structure is
an assembly of trusses, which are connected mutually and to the suroundings with hinges.
The truss can transfer only axial forces along its axis, so bending is not possible, and the axis
must be and remain straight.

In this chapter, we first consider small elongation and rotation of a truss. The material
behaves linearly elastic and the resulting equilibrium equation is linear. The finite element
method is used to model truss structures and to solve the resulting set of equilibrium equa-
tions.

Large elongations and rotations lead to a set of nonlinear equations. Moreover, the ma-
terial behavior is likely to be nonlinear as well. Solution of the set of equations must be done
iteratively. Implementation of various material models in the finite element software is the
subject of the next chapter.

1.1 Homogeneous truss

We consider a truss to be oriented with its axis along the global x-axis. Its undeformed length
is l0. The undeformed cross-sectional area has a uniform value A0. It is assumed that the
material of the truss is isotropic and homogeneous.
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Fig. 1.1 : Homogeneous truss

1.1.1 Elongation and contraction

In the deformed state the length of the truss is l and its cross-sectional area is A. The
elongation is described by the axial elongation factor λ. The change in cross-sectional area is
described by the contraction µ. It is assumed that the load, which provokes the deformation,
is such that the deformation is homogeneous. This means that λ and µ are the same in each
point of the truss. The volume change is described by the volume ratio J .
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Fig. 1.2 : Deformation of a homogeneous truss
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1.1.2 Stress

The deformation of the truss is caused by an external axial force N . In each cross-section
(x) of the truss, an internal axial force N(x) exists. With no volume load, the cross-sectional
load will be the same in each cross-section. If a volume load is applied, this is not the case,
but we will not consider such loading here.

The axial load is such that it causes only axial deformation and no bending. In the
absence of a volume load the deformation will be homogeneous.
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Fig. 1.3 : Axial loading of a homogeneous truss



The cross-sectional force is the result of the axial cross-sectional stress. For a homogeneous
material with no volume loads, the stress is uniform over the cross-section. This leads to
the definition of true stress, being the axial force divided by the deformed (= real) cross-
sectional area. In many (engineering) applications the engineering or nominal stress is used,
defined as the ratio of the axial force and the undeformed cross-sectional area. True stress
and engineering stress, are related by the contraction µ.

In literature a truss is sometimes called a tie when it carries a tensile force and a strut
when it is loaded in compression.
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Fig. 1.4 : Cross-sectional stress in an axially loaded homogeneous truss

axial stress σ = σ(y, z)

cross-sectional force N(x) = N =
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1.2 Linear deformation

When the elongation of the truss is very small, the contraction is even smaller so that the
deformed cross-sectional area can be taken to be equal to the initial cross-sectional area.
Consequently there is no difference between the true stress and the engineering stress.

1.2.1 Linear strain

Elongation is generally described by the strain ε. For small elongation and rotation, the linear
strain is used. For the elongation, this strain is related to the elongation facor λ and for the
contraction to the contraction µ.



linear strain ε = εl = λ − 1

contractive linear strain εd = µ − 1

1.2.2 Linear elastic behavior

The linear elastic material behavior is characterized by two matarial constants: Young’s
modulus and Poisson’s ratio. Young’s modulus relates the axial stress to the axial strain.
Poisson’s ratio relates the contractive strain to the axial strain. For most materials Poisson’s
ratio is about 0.3. For small elongations this value is constant. For small deformation the
volume change factor J can be expressed in the linear strain. For incompressible material
J = 1 implying ν = 1

2
.

axial stress ∼ strain σ = Eε

contraction strain ε = λ − 1 → εd = µ − 1 = −νε = −ν(λ − 1)

volume change J = (ε + 1)(−νε + 1)2 ≈ ε(1 − 2ν) + 1

The table lists values of Young’s modulus and Poisson’s ratio for some materials.

material E [GPa] ν [-] material E [GPa] ν [-]

Aluminum 69 - 79 0.31 - 0.34 Copper 105 - 150 0.33 - 0.35
Cast iron 105 - 150 0.21 - 0.30 Steel 200 0.33
Stainless steel 190 - 200 0.28 Lead 14 0.43
Magnesium 41 - 45 0.29 - 0.35 Nickel 180 - 215 0.31
Titanium 80 - 130 0.31 - 0.34 Tungsten 400 0.27
Diamond 820 - 1050 - Graphite 240 - 390 -
Glass 70 - 80 0.24 Epoxy 3.5 - 17 0.34
Nylon 1.4 - 2.8 0.32 - 0.40 Rubber 0.01 - 0.1 0.5

1.2.3 Equilibrium

We consider a truss with length l0 and cross-sectional area A0 with its axis along the global
x-axis. One end (x = 0) is fixed and the other (x = l0) can be displaced in x-direction only.
The elongation of the truss equals this displacement u. The displacement is caused by an
external axial force fe. In the deformed state the length of the truss is l = l0 + u and its
cross-sectional area is A. The material of the truss is homogeneous.

When the external axial force fe is prescribed, the elongation ∆l = u of the truss can
be determined by solving the equilibrium equation in point P , which states that the internal
force must be equal to the external force. The internal force fi is a function of the elongation,
a relation which is determined by the material behavior. It represents the resistance of the
truss against elongation.
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Fig. 1.5 : Equilibrium of external and internal axial force

external force fe

internal force fi = fi(u)
equilibrium of point P fi(u) = fe

When the deformation (= elongation) is very small, there is virtually no difference between
the undeformed and the deformed geometry. Such deformation is referred to as being geo-
metrically linear. The true axial stress σ = N/A approximately equals the engineering stress
σn = N/A0, where N is the axial force.

When, moreover, the material behavior is not influenced by the deformation, as is the
case for linear elastic behavior, – this is referred to as physical linearity – the total deformation
is linear and the internal force fi can be linearly related to the displacement u.

The equilibrium equation can be solved directly, yielding the displacement u.

1.2.4 Solution procedure

Because the relation between the external force fe and the axial displacement u is linear,
the latter can be solved directly from the equilibrium equation fi = fe, yielding the exact
solution uexact = us. The stiffness K of the truss depends on the Young’s modulus E and on
the initial geometry (A0 and l0).
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Fig. 1.6 : Solution of linear equilibrium equation



Proportionality and superposition

Two important characteristics hold for linear problems :

• the deformation is proportional to the load : when the external force fe is multiplied by
a factor, say α, the elongation u is also multiplied by α.

• superposition holds : when we determine the elongation u1 and u2 for two separate
forces, fe1 and fe2 respectively, the elongation for the combined loading fe1 + fe2 is the
sum of the separate elongations : u1 + u2.

1.3 Finite element method for linear truss

When a truss structure is loaded by external forces or prescribed displacements, its defor-
mation can sometimes be calculated analytically, especially when the structure is statically
determinate. When the structure is statically indeterminate, this is only possible for very
simple cases. Practical problems can be solved numerically, using the finite element method.

When the trusses in the structure show small elongation and rotation, and when more-
over their material behavior is linearly elastic, the whole problem is linear and the finite
element method can be explained rather straightforwardly.

In the following we restrict ourselves to two-dimensional structures.

Truss element

A truss element e with two nodal points is oriented with its axis in the 1-direction of a
two-dimensional coordinate system. Both nodes move in this direction – being by definition
positive – , leading to an elongation of the truss : its initial length le

0
becomes le.

This elongation is resisted by the material of the truss, leading to reaction forces in both
nodes : the internal nodal point forces, again defined to be positive in the positive 1-direction.
In absence of distributed axial load the axial force N in the truss is constant and a function
of the elongation.
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Fig. 1.7 : One-dimensional truss element
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In the initial situation an angle α0 may exist between the axis of a two-dimensional truss
element and the 1-direction of the coordinate system. The displacements and forces of/in
the nodal points have two components, and are defined positive in the positive coordinate
directions. Due to the deformation, the current angle of the axis is α. For small deformations
and rotations we have α ≈ α0.

The internal force components can be expressed in the axial force N and the cosine and
sine of the angle α. For a linear element the nodal forces f

˜

e
i

can be related to the elongation,

expressed in the nodal displacements in the direction of the element axis, denoted as uL
i ,

which are related to the displacement components of the nodal points u
˜

e. This relation is
expressed by the element stiffness matrix Ke.

1

u12

u11

u22

u21

fi12

fi22

fi21

fi11

α

2

Fig. 1.8 : Two-dimensional truss element
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Assembling

For the truss structure, the internal nodal forces are stored in a column f
˜

i
and are related

to the nodal displacement components in the column u
˜
. This relation is expressed by the

structural or global stiffness matrix K. The contributions of the individual element stiffnesses
to the structural stiffness are added in the assembling procedure.

The example shows two truss elements connected in one system node.
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The displacements of element nodes which are connected to one and the same system node,
must be equal to assure continuity.
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Assembled system equations f
˜

i
= Ku

˜

Equilibrium of the truss structure requires that the internal nodal point forces f
˜

i
are equal

to the external nodal point forces f
˜

e
. This leads to a linear system of equations for the nodal

displacement components u
˜
. It is, however, not yet possible to solve this set of equations,

because some essential boundary conditions have to be incorporated first.

f
˜

i
= f

˜
e

→ Ku
˜

= f
˜

e
= f

˜

Boundary conditions

The equilibrium equations can only be solved uniquely, when proper boundary conditions are
prescribed. These boundary conditions are suppressed displacements, prescribed displace-
ments and prescribed forces.



It is always needed to prevent rigid body motions, because otherwise no (unique) so-
lution can be determined. The algebraic system of equations Ku

˜
= f

˜
has to be solved to

determine the nodal displacements u
˜
. However, the stiffness matrix K is singular and cannot

be inverted to solve u
˜

when f
˜

is known. This singularity is obvious as we must conclude that
for a rigid body translation u

˜
= a

˜
6= 0

˜
the nodal forces are zero.

rigid translation u
˜

= a
˜

no forces needed K a
˜

= 0
˜

with a
˜
6= 0

˜
→ K singular

To get a non-singular matrix we have to suppress the rigid body movement of the construction,
by prescribing enough nodal displacements. Besides boundary conditions to suppress rigid
body motion, some more nodal displacements may be prescribed, as well as some nodal
forces. When in a node a displacement component is prescribed, the associated external force
component is unknown and vice versa.

Prescribed nodal displacement components are often denoted as kinematic boundary
conditions and prescribed nodal forces as dynamic boundary conditions.

The prescribed degrees of freedom u
˜

p are associated with unknown force components f
˜

p
.

The unknown degrees of freedom u
˜

u are associated with the known (prescribed or zero) force
components f

˜
u
. The components of u

˜
and f

˜
are reorganized.
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˜

=

[

u
˜

u

u
˜

p

]

; f
˜

=

[

f
˜

u

f
˜

p

]

Reorganizing components of u
˜

implies that columns of K have to be reorganized in the same
way. Reorganizing components of f

˜
implies that rows of K have to be reorganized in the

same way. The components associated with the various parts of u
˜

and f
˜

can be placed in
sub-matrices of the resulting matrix K. The reorganization of columns and matrix described
above is called partitioning.

As we can see, this partitioning leads to two sets of equations. Only the first set is
relevant for the calculation of the unknown u

˜
u. After determination of these unknowns, the

second set is used to calculate the unknown reaction forces f
˜

p
.

equilibrium Ku
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}

solving u
˜
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u
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˜
u = K−1
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u
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˜
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calculating f
˜

p
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p
= Kpuu

˜
u + Kppu

˜
p



Links

Links (or tyings) are relations between some of the components of u
˜
. In these relations we

make a difference between independent and dependent components. Dependent or linked
components can be calculated from the independent ones after these have been solved. The
linked components are removed from the equation system, as will be seen later. The inde-
pendent components are not, so they are called retained components. Components which are
not part of link relations are simply denoted as free. To identify the various components we
use the indices l (linked), r (retained) and f (free).

Associated with the linked degrees of freedom are nodal forces, which ensure the rela-
tionship. They are calculated by requiring that the total virtual energy, associated with the
links, is zero.

The column u
˜

is reorganized such that free, retained and linked components are grouped
in columns u

˜
f , u

˜
r and u

˜
l. The right-hand column f

˜
is reorganized in the same way. The

matrix K is adapted accordingly by moving rows and columns.
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The relation between u
˜

l and u
˜

r is denoted with a matrix Llr. Imposing the link relations will
result in a change of the corresponding components of f

˜
. In a mechanical system f̄

˜
r

and f̄
˜

l
may be seen as forces which are needed to realize the links between u

˜
r and u

˜
l. The resulting

work of these forces at a random change in u
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r and u
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Implementation of the link relations results in two systems of algebraic equations from which
u
˜

r and u
˜

l can be solved.
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Program structure

A finite element program starts with reading data from an input file and initialization of
variables and databases.

Subsquently, a loop over all elements is started to calculate Ke for each individual element
and place it at the proper location in the structural matrix K (assembly). After taking into
account the link relations and boundary conditions, the unknown nodal displacements are
calculated.

Subsequently, another loop over all elements is entered to calculate the element strains,
stresses and internal nodal forces f

˜

e
i
. The latter are assembled in the column f

˜
i
, which then

contains the reaction forces of the system.
Finally some calculated values are stored for post-processing.

read input data from input file

calculate additional variables from input data

initialize values and arrays

for all elements

calculate initial element stiffness matrix

assemble global stiffness matrix

end element loop

determine external load from input

take tyings into account

take boundary conditions into account

calculate nodal displacements

for all elements

calculate stresses from material behavior

calculate element internal nodal forces

assemble global internal load column

end element loop

store data for post-processing



1.3.1 FE program tr2dL

The Matlab program tr2dL is used to model and analyze two-dimensional truss structures.
The input data, which must be provided by the user, are a.o. the coordinates of the nodes,
the location of the trusses between nodes, element material data, link relations and prescribed
nodal displacements and forces.

In this section, a few examples of two-dimensional truss structures are shown, which are
modelled and analyzed with the program.

Simple two-dimensional truss structure

A simple truss structure is shown in the left figure below. The length of the horizontal truss
[1] is 100 mm and the length of truss [2] is 200/

√
3 mm. Cross-sectional areas are 10 and 20

mm2, respectively. Young’s modulus is 200 and 150 GPa and Poisson’s ratio is ν = 0.3. The
prescribed force F = −100 N leads to the deformation {u2x, u2y} = {−0.0071,−0.0222} mm,
which is shown in the right part of the figure. The real deformation is very small, which is in
accordance with the theory, so it is enlarged 1000 times.
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Fig. 1.9 : Deformation of a truss structure (× 1000).

Transformation of nodal coordinate system

It is possible to prescribe nodal displacements and/or forces in a local nodal coordinate system,
which is rotated over an angle w.r.t. the global system. An example is shown below, where
in node 2, the local coordinate axes are rotated over 45o w.r.t. the xy-axes. The length of
the horizontal truss is 100 mm and the length of the vertical truss is 50 mm. Cross-sectional
areas are 1 mm2. Young’s moduli and Poisson’s ratios are 100 GPa and 0.25. The external
load is F = 100 N.
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Fig. 1.10 : Deformation of a truss structure (× 250), with a transformed nodal coordinate
system.

Tyings

The figure shows a rigid beam hanging from three trusses, which have equal stiffness k. The
load P will cause an elongation of the trusses, which can be calculated, using link relations.

First the governing equations will be presented and solved analytically. Subsequently
the solution of the finite element program will be presented.

The two equilibrium relations are not sufficient to solve the problem. Deformation and
thus material behavior (= stiffness k) has to be taken into account. Still the final set of
equations cannot be solved.
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truss stiffness k1 = k2 = k3 = k

equilibrium F1 + F2 + F3 − P = 0 ; − F12l − F2l = 0

deformation v1 = − F1

k
; v2 = − F2

k
; v3 = − F3

k

equilibrium equations in displacements



−kv1 − kv2 − kv3 − P = 0 ; 2lkv1 + lkv2 = 0

Due to the rigidity of the beam, the displacements v1, v2 and v3 are not independent. The
dependency represents a link relation. Displacement v2 is linked to the displacements v1 and
v3. Displacement v2 is eliminated from the equation system and v1 and v3 are retained.

link relation v2 = 1

2
(v1 + v3) → v2 =

[

1

2

1

2

]

[

v1

v3

]

elimination of v2 → equation for retained displacements
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The finite element solution is calculated. The undeformed and deformed structure is shown
in the figure below. Both for the analytic and the numerical calculation, we find the next
values for the nodal displacements, when setting k = 100 N/mm and P = −10000 N.
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Fig. 1.11 : Deformation of a truss structure with applied links (× 10).
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