
NONLINEAR TRUSS



1 Nonlinear deformation

When deformation and/or rotation of the truss are large, various strains and stresses can be
defined and related by material laws. The material behavior can be expected to be no longer
linearly elastic.

1.1 Strains for large elongation

The deformation of the truss can be characterized uniquely by the two elongation factors λ
and µ. However, it is common and useful to introduce deformation variables which are a
function of the elongation factors : the strains. A wide variety of strain definitions is possible
and used.

All strain definitions must obey some requirements, one of which is that they have to
result in the same value for small elongations, being the value of the linear strain. When we
plot the various strains as a function of the elongation factor, it is immediately clear that the
strains, which are defined here, obey this requirement.

It is obvious that one and the same strain definition must be used throughout the same
specimen and analysis. This implies that the contraction strain is defined analogously to the
elongational strain. These strains are related by a material parameter, the Poisson’s ratio ν.
It is assumed, until stated otherwise, that this parameter is constant.

linear strain ε = εl = λ− 1
logarithmic strain ε = εln = ln(λ)
Green-Lagrange strain ε = εgl = 1
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Fig. 1.1 : Three strain definitions as function of the elongation factor



Linear strain

The linear strain definition results in unrealistic contraction, when the elongation is too large.
The cross-sectional area of the truss can become zero, which is of course not possible.

linear strain ε = εl = λ− 1 =
∆l

l0
contraction strain εd = µ− 1 = −νεl = −ν(λ− 1)

change of cross-sectional area

µ =

√

A

A0
= 1 − ν(λ− 1) → A = A0{1 − ν(λ− 1)}2

restriction of elongation

1 − ν(λ− 1) > 0 → λ− 1 <
1

ν
→ λ <

1 + ν

ν

Logarithmic strain

The logarithmic strain definition does not lead to unrealistic values for the contraction. There-
fore it is very suitable to describe large deformations. 1

logarithmic strain ε = εln = ln(λ)

contraction strain εd = ln(µ) = −νεln = −ν lnλ

change of cross-sectional area

µ =

√

A

A0
= e−νεln = e−ν ln(λ) =

[

eln(λ)
]

−ν

= λ−ν → A = A0λ
−2ν

A deformation process may be executed in a number of steps, as is often done in forming
processes. The start of a new step can be taken to be the reference state to calculate current
strains. In that case the logarithmic strain is favorably used, because the subsequent strains
can be added to determine the total strain w.r.t. the initial state.
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Fig. 1.2 : Two-step deformation process

1 ln x = e log(x) = y → x = e
y



l0→l1 εl(01) = l1−l0
l0

εln(01) = ln( l1
l0

)

l1→l2 εl(12) = l2−l1
l1

εln(12) = ln( l2
l1

)

l0→l2 εl(02) = l2−l0
l0

6= εl(01) + εl(12)

εln(02) = ln( l2
l0

) = ln( l2
l1

l1
l0

) = εln(01) + εln(12)

Green-Lagrange strain

Using the Green-Lagrange strain leads again to restrictions on the elongation to prevent the
cross-sectional area to become zero.

Green-Lagrange strain ε = εgl = 1
2(λ2 − 1)

contraction strain εd = 1
2(µ2 − 1) = −νεln = −ν 1

2(λ2 − 1)

change of cross-sectional area

1 − ν(λ2 − 1) > 0 → λ <

√

1 + ν

ν

1.2 Mechanical power for an axially loaded truss

The figure shows a tensile bar which is elongated due to the action of an axial force F .
Its undeformed cross-sectional area and length are A0 and l0, respectively. In the deformed
configuration the cross-sectional area and length are A and l.

At constant force F an infinitesimal small increase in length is associated with a change
in mechanical energy per unit of time (power) : P = F l̇. The elongation rate l̇ can be
expressed in various strain rates.
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Fig. 1.3 : Axial elongation of homogeneous truss



linear strain εl = λ− 1 → ε̇l = λ̇ =
l̇

l0

logarithmic strain εln = ln(λ) → ε̇ln = λ̇λ−1 =
l̇

l

Green-Lagrange strain εgl = 1
2(λ2 − 1) → ε̇gl = λ̇λ = λ

l̇

l0
= λ2 l̇

l

P = F ℓ̇ = Fℓ0ε̇l =
F

A0
A0ℓ0ε̇l =

F

A0
V0ε̇l

P = F ℓ̇ = Fℓε̇ln =
F

A
Aℓε̇ln =

F

A
V ε̇ln

P = F ℓ̇ = Fℓ0ε̇l =
F

A
Aℓ
ℓ0
ℓ
ε̇l =

F

A
V λ−1ε̇l

P = F ℓ̇ = Fℓλ−2ε̇gl =
F

A
Aℓλ−2ε̇gl =

F

A
V λ−2ε̇gl

Various stress definitions automatically emerge when the mechanical power is considered in
the undeformed volume V0 = A0l0 or the current volume V = Al of the tensile bar. The
stresses are :

σ : Cauchy or true stress
σn : engineering or nominal stress
σp1 : 1st Piola-Kirchhoff stress = σn
σκ : Kirchhoff stress
σp2 : 2nd Piola-Kirchhoff stress

P = = = V0σnε̇l

P = V σε̇ln = V0(Jσ)ε̇ln = V0σκε̇ln

P = V (σλ−1)ε̇l = V0(Jσλ
−1)ε̇l = V0σp1ε̇l

P = V (σλ−2)ε̇gl = V0(Jσλ
−2)ε̇gl = V0σp2ε̇gl

specific mechanical power : P = V0Ẇ0 = V Ẇ

Ẇ0 = σnε̇l = σκε̇ln = σp1ε̇l = σp2ε̇gl

Ẇ = = σε̇ln = σλ−1ε̇l = σλ−2ε̇gl

1.3 Equilibrium

Deformations may be so large that the geometry changes considerably. This and/or non-
linear boundary conditions render the deformation problem nonlinear. Proportionality and
superposition do not hold in that case. The internal force fi is a nonlinear function of the
elongation u.



Nonlinear material behavior may also result in a nonlinear function fi(u). This nonlin-
earity is almost always observed when deformation is large.

Solving the elongation from the equilibrium equation is only possible with an iterative
solution procedure.

u

fi(u)

fe

uexact

Fig. 1.4 : Nonlinear internal load and constant external load

external force fe
internal force fi = σA = fi(u)
equilibrium of point P fi(u) = fe

1.4 Iterative solution procedure

It is assumed that an approximate solution u∗ for the unknown exact solution uexact exists.
(Initially u∗ = 0 is chosen.)

The residual load r∗ is the difference between f(u∗) and fe. For the exact solution this
residual is zero. What we want the iterative solution procedure to do, is generating better
approximations for the exact solution so that the residual becomes very small (ideally zero).
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Fig. 1.5 : Approximation of exact solution

analytic solution fi(uexact) = fe → fe − fi(uexact) = 0
approximation u∗ fe − fi(u

∗) = r(u∗) 6= 0
residual r∗ = r(u∗)



The unknown exact solution is written as the sum of the approximation and an unknown
error δu. The internal force fi(uexact) is then written as a Taylor series expansion around u∗

and linearized with respect to δu. The first derivative of fi with respect to u is called the
tangential stiffness K∗. Subsequently δu is solved from the linear iterative equation. The
solution is called the iterative displacement.

fi(uexact) = fe
uexact = u∗ + δu

}

→ fi(u
∗ + δu) = fe

fi(u
∗) +

dfi
du

∣

∣

∣

∣

u∗
δu = fe → f∗i +K∗δu = fe

K∗ δu = fe − f∗i = r∗ → δu =
1

K∗
r∗

u

δu
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Fig. 1.6 : Tangential stiffness and iterative solution

With the iterative displacement δu a new approximate solution u∗∗ can be determined by
simply adding it to the known approximation.

When u∗∗ is a better approximation than u∗, the iteration process is converging. As the
exact solution is unknown, we cannot calculate the deviation of the approximation directly.
There are several methods to quantify the convergence.
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Fig. 1.7 : New approximation of the exact solution



new approximation u∗∗ = u∗ + δu
error uexact − u∗∗

error smaller → convergence

1.5 Convergence control

When the new approximation u∗∗ is better than u∗, the residual r∗∗ is smaller than r∗. If its
value is not small enough, a new approximate solution is determined in a new iteration step.
If its value is small enough, we are satisfied with the approximation u∗∗ for the exact solution
and the iteration process is terminated. To make this decision the residual is compared to a
convergence criterion cr. It is also possible to compare the iterative displacement δu with a
convergence criterion cu. If δu < cu it is assumed that the exact solution is determined close
enough.

When the convergence criterion is satisfied, the displacement u will not satisfy the nodal
equilibrium exactly, because the convergence limit is small but not zero. When incremental
loading is applied, the difference between fi and fe is added to the load in the next increment,
which is known as residual load correction.
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Fig. 1.8 : New residual for approximate solution

residual force |r∗∗| ≤ cr → stop iteration
iterative displacement |δu| ≤ cu → stop iteration



u

fi(u)

fe

Fig. 1.9 : Converging iteration process

1.6 Residual and tangential stiffness

The residual and the tangential stiffness can be calculated from the material model, which
describes the material behavior. It is assumed that this is a relation between the axial Cauchy
stress σ and the elongation factor or stretch ratio λ = l

l0
: σ = σ(λ). It is also necessary to

now the relation between the cross-sectional area A and λ.

internal nodal force f∗i = N(λ∗) = A∗σ∗

tangential stiffness K∗ =
∂fi
∂u

∣

∣

∣

∣

u∗
=
∂N(λ)

∂u

∣

∣

∣

∣

u∗
=
dN

dλ

∣

∣

∣

∣

λ∗

dλ

du

geometry λ = 1 +
∆l

l0
= 1 +

1

l0
u →

dλ

du
=

1

l0

tangential stiffness K∗ =
dN

dλ

∣

∣

∣

∣

λ∗

∂λ

∂u
=
dN

dλ

∣

∣

∣

∣

λ∗

1

l0
=
dN

dλ

∣

∣

∣

∣

∗ 1

l0
=

1

l0

d

dλ
(σA)

∣

∣

∣

∣

∗

K∗ =
1

l0

dσ

dλ

∣

∣

∣

∣

∗

A∗ +
1

l0
σ∗

dA
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∣

∣

∣
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∗

1.7 Incremental loading

The external loading may be time-dependent. To determine the associated deformation, the
time is discretized : the load is prescribed at subsequent, discrete moments in time and
deformation is determined at these moments. A time interval between two discrete moments
is called a time increment and the time dependent loading is referred to as incremental loading.
This incremental loading is also applied for cases where the real time (seconds, hours) is not
relevant, but when we want to prescribe the load gradually. One can than think of the ”time”
as a fictitious or virtual time.
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Fig. 1.10 : Incremental loading

Non-converging solution process

The iteration process is not always converging. Some illustrative examples are shown in the
next figures.
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Fig. 1.11 : Non-converging solution processes



Modified Newton-Raphson procedure

Sometimes, it is possible to reach the exact solution by modifying the Newton-Raphson iter-
ation process. The tangential stiffness is then not updated in every iteration step. Its initial
value is used throughout the iterative procedure.

The figure shows a so-called ”snap-through” problem, where no convergence can be
reached due to a cycling full Newton-Raphson iteration process. With modified Newton-
Raphson, iteration proceeds to the equilibrium fi = fe.
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Fig. 1.12 : Modified Newton-Raphson procedure



2 Weighted residual formulation for nonlinear truss

In the initial configuration a truss has length ℓ0. In the current configuration the truss is
subjected to an axial load: concentrated forces N0 and Nℓ in begin and end point, and a
volume load q(s) per unit of length. It has length ℓ and is rotated with respect to the initial
configuration. The coordinate along the truss axis is s and the direction of the axis is indi-
cated by the unit vector ~n.

In each point of the truss the equilibrium equation has to be satisfied. The equilibrium
equation is derived under assumption of static loading conditions. It is a differential equa-
tion, for which analytical solutions do only exist for rather simple boundary conditions. For
practical problems we have to be satisfied with an approximate solution.

The error represented by the approximation can be ”smeared out” along the axis of the
truss, by integrating the product of this error and a so-called weighting function over the
length of the truss.

N0 s

Nℓ

s0

q(s)

ℓ

ℓ0

Fig. 2.13 : Inhomogeneous truss

equilibrium
d ~N

ds
+ ~q(s) = ~0 →

d(σA~n)

ds
+ ~q(s) = ~0 ∀ s ∈ [ 0, ℓ ]

approximation
d(σ∗A∗~̄n)

ds
+ ~q(s) = ~∆(s) 6= ~0 ∀ s ∈ [ 0, ℓ ]

weighted error ~∆(s) is ”smeared out” over[0, ℓ] →

∫ s=ℓ

s=0
~w(s) ·

~∆(s) ds



2.1 Weighted residual formulation

The product of the left-hand side of the equilibrium equation and a weighting function ~w(s)
can be integrated over the element length, resulting in the weighted residual integral. The
principle of weighted residuals now states that :

the requirement that the equilibrium equation is satisfied in each point

of the truss, is equivalent to the requirement that the weighted residual

integral is zero for every possible weighting function.

The first term in the integral is integrated by parts to reduce the continuity requirements of
the axial stress. This results in the so-called weak form of the weighted residual formulation.
The right hand part of the resulting integral equation represents the contribution of the
external loads.

∫ s=ℓ

s=0
~w ·

{

d(σA~n)

ds
+ ~q

}

ds = 0 ∀ ~w(s) →

∫ s=ℓ

s=0

d~w

ds
· (σA~n) ds =

∫ s=ℓ

s=0
~w · ~q ds+

[

~w(ℓ) ·
~N(ℓ) − ~w(0) ·

~N(0)
]

= fe(~w) ∀ ~w(s)

2.2 State transformation

Because the current length of the truss is not known, the integration can not be carried out.
Also the derivatives with respect to the coordinate s can not be evaluated. These problems
can be circumvented by a transformation. In this case we transform everything to the initial
configuration on time t0 where the truss is undeformed. This procedure is generally referred
to as the Total Lagrange approach. When transformation is carried out to the last known
configuration, we would have followed the Updated Lagrange approach, which will not be
considered here.

d( )

ds
=
ds0
ds

d( )

ds0
=

1

λ

d( )

ds0
; ds = λds0 ⇒

∫ s0=ℓ0

s0=0

d~w

ds0
· (σA~n) ds0 = fe0(~w) ∀ ~w(s0)

The current stress σ, cross-sectional area A and axis direction ~n have to be determined
such that the integral is satisfied for every weighting function. Following a Newton-Raphson
iteration procedure, the exact solutions are written as the sum of an approximation and a
deviation. Subsequently linearisation is carried out.

∫ s0=ℓ0

s0=0

d~w

ds0
· (σ∗ + δσ)(A∗ + δA)(~n∗ + δ~n) ds0 = fe0(~w) ∀ ~w(s0)



Linearisation with assumption δA ≈ 0 leads to an iterative weighted residual integral.

∫ s0=ℓ0

s0=0

d~w

ds0
· δσA∗~n∗ ds0 +

∫ s0=ℓ0

s0=0

d~w

ds0
·σ∗A∗δ~n ds0

= fe0(~w) −

∫ s0=ℓ0

s0=0

d~w

ds0
·σ∗A∗~n∗ ds0 ∀ ~w(s0)

2.3 Material model → iterative stress change

The material model relates the stress σ to the elongation λ. Using this relation the iterative
change δσ can be expressed in the iterative displacement δ~u.

σ = σ(λ) → δσ =
dσ

dλ

∣

∣

∣

∣

∗

δλ =
dσ

dλ

∣

∣

∣

∣

∗ d(δs)

ds0
=
dσ

dλ

∣

∣

∣

∣

∗

~n∗ ·

d(δ~u)

ds0

2.4 Rotation → iterative orientation change

Due to the rotation of the truss, the axis direction vector ~n is also a function of the iterative
displacement. The vector ~m is a unit vector perpendicular to ~n.

~n =
d~x

ds
=
ds0
ds

d~x

ds0
=

1

λ

d~x

ds0

δ~n =

[

−
1

λ2

d~x

ds0

]

∗

δλ+

[

1

λ

]

∗ d(δ~x)

ds0
=

[

−
1

λ
~n

]

∗

δλ+

[

1

λ

]

∗ d(δ~x)

ds0

=

[

−
1

λ
~n~n

]

∗

·

d(δ~u)

ds0
+

[

1

λ

]

∗ d(δ~u)

ds0
=

[

(I − ~n~n)
1

λ

]

∗

·

d(δ~u)

ds0

=

[

~m~m
1

λ

]

∗

·

d(δ~u)

ds0

2.5 Iterative weighted residual integral

The expressions for δσ and δ~n are substituted into the iterative weighted residual integral.

∫ s0=ℓ0

s0=0

d~w

ds0
·

(

dσ

dλ

∣

∣

∣

∣

∗

~n∗ ·

d(δ~u)

ds0

)

A∗~n∗ ds0 +

∫ s0=ℓ0

s0=0

d~w

ds0
·σ∗A∗

(

~m∗ ~m∗
·

1

λ∗
d(δ~u)

ds0

)

ds0

= fe0(~w) −

∫ s0=ℓ0

s0=0

d~w

ds0
· σ∗A∗~n∗ ds0 ∀ ~w(s0)



∫ s0=ℓ0

s0=0

d~w

ds0
·~n∗

(

dσ

dλ

∣

∣

∣

∣

∗

A∗

)

~n∗ ·

d(δ~u)

ds0
ds0 +

∫ s0=ℓ0

s0=0

d~w

ds0
· ~m∗

(

σ∗A∗
1

λ∗

)

~m∗
·

d(δ~u)

ds0
ds0

= fe0(~w) −

∫ s0=ℓ0

s0=0

d~w

ds0
·σ∗A∗~n∗ ds0 ∀ ~w(s0)



3 Finite element method for nonlinear truss

The mechanical behavior of truss structures, which are build from nonlinear trusses, which
may show large elongations and (thus) large rotations, can be analyzed with the finite element
method. Individual truss elements are considered first, which means that the structure is
discretized. Later the contributions of all trusses will be combined in an assembling procedure.

3.1 Element equation

We start with the weighted residual integral for one truss element, which length is ℓe0 in the
initial state and ℓe in the current state. First, the global coordinate s0 is replaced by a local
element coordinate ξ.

sf e1

f e2

s0

q(s)

ℓe

ℓe0

Fig. 3.14 : Inhomogeneous truss element in undeformed state

local coordinate : −1 ≤ ξ ≤ 1 ; ds0 =
l0
2
dξ ;

d( )

ds0
=

2

l0

d( )

dξ

ξ=1
∫

ξ=−1

d~w

dξ
·~n∗

(

dσ

dλ

∣

∣

∣

∣

∗

A∗
2

l0

)

~n∗ ·

d(δ~u)

dξ
dξ +

ξ=1
∫

ξ=−1

d~w

dξ
· ~m∗

(

σ∗A∗
1

λ∗
2

l0

)

~m∗
·

d(δ~u)

dξ
dξ = f ee0(~w) −

ξ=1
∫

ξ=−1

d~w

dξ
·σ∗A∗~n∗ dξ



The vectors in the weighted residual integral are written in components with respect to a
vector basis.

ξ=1
∫

ξ=−1

dw
˜
T

dξ
n
˜
∗

(

dσ

dλ

∣

∣

∣

∣

∗

A∗
2

l0

)

n
˜
∗T d(δu

˜
)

dξ
dξ +

ξ=1
∫

ξ=−1

dw
˜
T

dξ
m
˜
∗

(

σ∗A∗
1

λ∗
2

l0

)

m
˜
∗T d(δu

˜
)

dξ
dξ

= f ee0(w
˜
) −

ξ=1
∫

ξ=−1

dw
˜
T

dξ
σ∗A∗n

˜
∗ dξ

3.2 Interpolation

Both the iterative displacement and the weighting function components are interpolated be-
tween their values in the element nodes. Here we use a linear interpolation between two nodal
values. The element nodes are located in the begin and end points of the element. Following
the Galerkin procedure, the interpolation functions for δu

˜
and w

˜
are taken to be the same.

The derivatives of δu
˜

and w
˜

can also be interpolated directly.
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[

w11ψ
1 + w21ψ

2 w12ψ
1 + w22ψ

2
]
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Substitution of the interpolated variables leads to an element integral equation, where the
internal nodal forces and the element tangential stiffness matrix can be recognized.
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With the introduction of some proper matrices and columns, the element equation can be
written in short form.
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3.3 Integration

Integation over the element length is needed to determine the element stiffness matrix Ke∗

and the internal force column f
˜

e∗

i
.

For a homogeneous element, e.g. an element with uniform cross-sectional area and ma-
terial properties, this leads to the following expressions.
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3.4 Assembling

The contributions of the individual elements are added in the assembling procedure. The re-
sult is an integral equation for the total system, which, according to the principle of weighted
residuals, has to be satisfied for every column with nodal weighting function values. This
requirement leads to a system of algebraic equations from which the iterative nodal displace-
ment components must be solved.

element contribution w
˜
eTKe∗δu

˜
e = w

˜
eT f

˜

e

e0
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˜
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˜

e∗

i
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assembled equation w
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∗

i
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˜
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˜
∗

3.5 Boundary conditions

Boundary conditions are only applied at the beginning of an incremental step. Links –
relations between degrees of freedom – can be incorporated as usual, but now of course for
the iterative displacements.



3.6 Program structure

A finite element program starts with reading data from an input file and initialization of
variables and databases.

The loading is prescribed as a function of the (fictitious) time in an incremental loop.
In each increment the system of nonlinear equilibrium equations is solved iteratively.

In each iteration loop the system of equations is build. In a loop over all elements, the
stresses are calculated and the material stiffness is updated. The element internal nodal force
column and the element stiffness matrix are assembled into the global column and matrix.

After taking tyings and boundary conditions into account, the unknown nodal displace-
ments and reaction forces are calculated.

When the convergence criterion is not reached, a new iteration step is performed. After
convergence output data are stored and the next incremental step is carried out.

read input data from input file

calculate additional variables from input data

initialize values and arrays

while load increments to be done

for all elements

calculate initial element stiffness matrix

assemble global stiffness matrix

end element loop

determine external incremental load from input

while non-converged iteration step

take tyings into account

take boundary conditions into account

calculate iterative nodal displacements

calculate total deformation

for all elements

calculate stresses from material behavior

calculate material stiffness from material behavior

calculate element internal nodal forces

calculate element stiffness matrix

assemble global stiffness matrix

assemble global internal load column

end element loop

calculate residual load column



calculate convergence norm

end iteration step

store data for post-processing

end load increment



3.7 FE program tr2d

The Matlab program tr2d is used to model and analyze two-dimensional truss structures,
where large deformations and nonlinear material behavior may occur.

In this section, examples of two-dimensional truss structures are shown. The material
behavior is always elastic and described by a linear relation between the Cauchy stress and
the linear strain. Other material models have also been implemented in the program.

Large deformation of a truss structure

A structure is made of five trusses. The vertical truss is 0.5 m and the horizontal truss is 1
m in length. Cross-sectional areas are 100 mm2. The modulus is 2.5 GPa. Contraction is
not considered (ν = 0). The vertical displacement of node 4 is prescribed to increase from
0 to -0.25 m. The reaction force, the horizontal displacement of node 4 and the vertical
displacement of node 2 is plotted against the fictitious time t.
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Fig. 3.15 : Large deformation of a truss structure.

Buckling

Large rotations occur when buckling leads to a sudden increase in deformation. The theoret-
ical buckling load can be calculated analytically for a simple systems as shown here.

The numerical calculation starts with a very small imperfection being an initial vertical
displacement of the inner node(s) of ± 0.0001 m. This allows us to reach not only the first and
smallest buckled state, the symmetric shape, but also the second mode, the anti-symmetric
shape. Also a larger imperfection is analized for both buckling modes.



The horizontal trusses have a high stiffness of kt = (EA)/l = (100e9)(100e − 6)/1 N/m,
while the springs have a very low stiffness of k = 1 N/m. The displacement in node 4 is
prescribed to increase from 0 to -0.02 m.
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Fig. 3.16 : Symmetric and anti-symmetric buckling.
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Fig. 3.17 : Buckling forces versus displacement (left). Symmetric and anti-symmetric
buckling shapes (right).
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