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1 One-dimensional material models

In the following sections material behavior is described in a one-dimensional context. and
used to analyze the axial deformation of trusses. The material behavior is modeled, using a
discrete mechanical model of springs, dashpots and friction sliders. The axial stress is related
to the axial strain by one or more (differential) equation(s) from which the stress response
must be calculated when the strain excitation is prescribed. This stress update procedure is
implemented in Matlab files.

The various material models are incorporated in a finite element program, which is used
to model and analyze the mechanical behavior of truss structures, subjected to prescribed
displacements and/or forces. In the iterative solution procedure, the material stiffness plays
an essential role and must be derived from the material law.

2 Material behavior

Characterization of the mechanical behavior of an unknown material almost always begins
with performing a tensile experiment. A stepwise change in the axial stress σ may be pre-
scribed and the strain ε of the tensile bar can be measured and plotted as a function of time.
From these plots important conclusions can be drawn concerning the material behavior.

For elastic material behavior the strain follows the stress immediately and becomes
zero after stress release. For elastoplastic material behavior the strain also follows the stress
immediately, but there is permanent deformation after stress release. When the material
is viscoelastic the strain shows time delayed response on a stress step, which indicates a
time dependent behavior. When time dependent behavior is accompanied by permanent
deformation, the behavior is referred to as viscoplastic.
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Fig. 2.1 : Strain response for a stress-step for a) elastic b) elastoplastic, c) viscoelastic and
d) viscoplastic material behavior

Another way of representing the measurement data of the tensile experiment is by plotting
the stress against the strain, resulting in the stress-strain curve. The relation between stress
and strain may be linear or nonlinear. Also, the relation may be history dependent, due
to changes in the material structure. Different behavior in tensile and compression may be
observed.

2.1 Tensile curve : elastic behavior

When elastic behavior is well described by a linear relation between stress and strain, the
elastic behavior is referred to as linear.
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Fig. 2.2 : Tensile curves for elastic material behavior

2.2 Tensile curve : viscoelastic behavior

Viscoelastic behavior is time-dependent. The stress is a function of the strain rate. There
is a phase difference between stress and strain, which results in a hysteresis loop when the
loading is periodic.
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Fig. 2.3 : Tensile curve and hysteresis loop for viscoelastic material behavior



2.3 Tensile curve : elastoplastic behavior

When a material is loaded or deformed above a certain threshold, the resulting deformation
will be permanent or plastic. When time (strain rate) is of no importance, the behavior is re-
ferred to as elastoplastic. Stress-strain curves may indicate different characteristics, especially
when the loading is reversed from tensile to compressive.
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Fig. 2.4 : Tensile curves for elastoplastic material behavior

2.4 Tensile curve : viscoplastic behavior

A combination of plasticity and time-dependency is called viscoplastic behavior. This be-
havior is often observed for polymeric materials. For some polymers the stress reaches a
maximum and subsequently drops with increasing strain. This phenomenon is referred to as
intrinsic softening. In a tensile experiment it will provoke necking of the tensile bar.
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Fig. 2.5 : Tensile curves for viscoplastic material behavior



2.5 Tensile curve : damage

Structural damage influences the material properties. The onset and evolution of damage
can be described with a damage model. For materials like concrete and ceramics, the onset
and propagation of damage causes softening. Because damage is often associated with the
initiation and growth of voids, the stress-strain curve is different for tensile and compressive
loading.
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Fig. 2.6 : Tensile curve for damaging material with different behavior in tension and
compression

2.6 Discrete material models

Material models relate stresses to deformation and possibly deformation rate. For three-
dimensional continua the material model is often represented by a (large) number of coupled
(differential) equations. As a simplified introduction, we will present material models first in
a one-dimensional setting. The material behavior is represented by the behavior of a one-
dimensional, discrete, mechanical system of springs, dashpots and friction sliders. For such a
system the relation between the axial stress σ and the axial strain ε can be derived.

In the following sections models for elastic, elastoplastic, linear viscoelastic, creep, vis-
coplastic and nonlinear viscoelastic behavior will be presented.
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Fig. 2.7 : Discrete elements : spring, dashpot and friction slider



3 Elastic material behavior

When a material behaves elastically, the current stress can be calculated directly from the
current strain, because there is no path and/or time dependency. When the stress is released,
the strain will become zero, so there is no permanent deformation at zero stress. All stored
strain energy is released and there is no energy dissipation. For the one-dimensional case of
an axially loaded truss the elastic behavior is described by a relation between the stress σ
and the elongation factor λ or the strain ε.
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Fig. 3.8 : Non-linear elastic material behavior

3.1 Small strain elastic behavior

For small elongations, all strain definitions are the same, as are all stress definitions. The
relation between stress and strain is linear and the constant material parameter is the Young’s
modulus.

strain ε = εgl = εln = εl = λ− 1

stress σ =
F

A
=

F

A0
= σn

linear elastic behavior σ = Eε = E(λ− 1)

modulus E = lim
λ→1

dσ

dλ
= lim

ε→0

dσ

dε

3.2 Large strain elastic behavior

For large deformations, nonlinear elastic behavior can be observed in polymers, elastomeric
materials (rubbers) and, on a small scale, in atomic bonds, when a tensile/compression test
is carried out and the axial force F is plotted as a function of λ. In a material model we



want to describe such behavior with a mathematical relation between a stress and a strain.
Consideration of the stored elastic energy per unit of volume learns that each stress definition
is associated with a certain strain definition, so these should be combined in a material model.
However, when the observed material behavior is described accurately by another stress/strain
combination, it can be used as well.

For three-dimensional models more considerations have to be taken into account. Care
has to be taken that the material model does not generate stresses for large rigid body
rotations of the material, which is known as the requirement of objectivity.

σ

0 1 λ
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Fig. 3.9 : Non-linear stress-strain relations for an atomic bond and for an elastomeric
material

3.3 Elasticity models

The discrete one-dimensional model for elastic material behavior is a spring. The behavior is
modeled with a relation between the stress σ and the elongation factor λ or a strain ε. The
material stiffness Cλ is the derivative of σ w.r.t. the stretch ratio λ. The derivative w.r.t. the
strain ε results in the stiffness Cε.

Consideration of the stored elastic energy per unit of material volume (see ??) learns that,
in a material model, true stress σ should be combined with logarithmic strain εln, engineering
stress σn with linear strain εl or 2nd-Piola-Kirchhoff stress σp2 with Green-Lagrange strain
εgl. Experimentally observed tensile behavior can often be described with a linear relation
between a certain stress and its associated strain.
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Fig. 3.10 : Spring



constitutive equation σ = σ(λ)

stiffness Cλ =
dσ

dλ
=
dσ

dε

dε

dλ
= Cε

dε

dλ

4 Hyper-elastic models

Elastomeric materials (rubbers) show very large elastic deformations (elongation up to λ = 5).
The material models for these materials are therefore referred to as hyper-elastic. They are
derived from an elastic energy function, which has to be determined experimentally. The
three-dimensional versions of these so-called Rivlin or Mooney models are expressed in the
principal elongation factors λi, i = 1, 2, 3. Experimental observations indicate that elastomeric
materials are incompressible, so that we have λ1λ2λ3 = 1.
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n

∑
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∑
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2

The incremental change of the elastically stored energy per unit of deformed volume, can be
expressed in the principal stresses and the principal logarithmic strains.

dW = σ1dεln1
+ σ2dεln2

+ σ3dεln3

4.1 Mooney models

For incompressible materials like elastomer’s (rubber) the stored elastic energy per unit of de-
formed volume is specified and fitted onto experimental data. Several specific energy functions
are used.

Neo-Hookean W = C10 (I1 − 3)

Mooney-Rivlin W = C10 (I1 − 3) +C01 (I2 − 3)

Signiorini W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2

Yeoh W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3

Klosner-Segal W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C03(I2 − 3)3



2-order invariant W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2

Third-order model of James, Green and Simpson

W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) +

C20(I1 − 3)2 + C02(I2 − 3)2 + C21(I1 − 3)2(I2 − 3) +

C30(I1 − 3)3 + C03(I2 − 3)3 + C12(I1 − 3)(I2 − 3)2

4.2 Ogden models

For ’slightly’ compressible materials the Ogden specific energy functions are used. Because the
volume change is not zero, these functions depend on the volume change factor J = λ1λ2λ3.
The second part of the energy function accounts for the volumetric deformation. Because the
volumetric behavior is characterized by a constant bulk modulus K, the model is confined to
slightly compressible deformation.

For ’highly’ compressible materials like foams, specific energy functions also exist. The
first part of the energy function also describes volume change.

slightly compressible W =

N
∑

i=1

ai

bi

[

J−
bi

3

(

λbi

1 + λbi

2 + λbi

3

)

− 3

]

+ 4.5K

(

J
1
3 − 1

)2

highly compressible W =

N
∑

i=1

ai

bi

(

λbi

1 + λbi

2 + λbi

3 − 3
)

+

N
∑

i=1

ai

ci
(1 − Jci)

4.3 One-dimensional models

For tensile (or compressive) loading of a homogeneous and isotropic truss, where the axial
direction is taken to be the 1-direction, we have : λ1 = λ and λ2 = λ3 = 1/

√
λ. In this case

there is only an axial stress σ1 = σ, so that we have

dW = σ dεln → σ =
dW

dεln
=
dW

dλ

dλ

dεln
=
dW

dλ
λ

The Neo-Hookean model is the simplest model as it contains only one material parameter.
Axial stress σ and axial force F can be calculated easily. From statistical mechanics it is
known that for an ideal rubber material the stress is :

σ =
ρRT

M

(

λ2 − 1

λ

)

with ρ : density
R : gas constant = 8.314 JK−1mol−1

T : absolute temperature
M : average molecular weight

Most rubber materials cannot be characterized well with the Neo-Hookean model. The more
complex Mooney-Rivlin model yields better results. The stiffness Cλ is a function of the
elongation factor λ. The initial stiffness E is often referred to as the modulus.



Neo− Hookean

W = C10

(

λ2 + 2
λ − 3

)

σ = C10

(

2λ− 2

λ2

)

λ = 2C10

(

λ2 − 1

λ

)

Cλ =
∂σ

∂λ
= 2C10

(

2λ+
1

λ2

)

; E = lim
λ→1

∂σ

∂λ
= 6C10

F = σA = σ
1

λ
A0 = 2C10A0

(

λ− 1

λ2

)

Mooney − Rivlin

W = C10

(

λ2 +
2

λ
− 3

)

+ C01

(

1

λ2
+ 2λ− 3

)

σ = 2C10

(

λ2 − 1

λ

)

+ 2C01

(

λ2 − 1

λ

)

1

λ

Cλ =
∂σ

∂λ
= 2C10

(

2λ+
1

λ2

)

+ 2C01

(

1 +
2

λ3

)

; E = lim
λ→1

∂σ

∂λ
= 6(C10 + C01)

F = σA = σ
1

λ
A0 = A0

1

λ

[

2C10

(

λ2 − 1

λ

)

+ 2C01

(

λ2 − 1

λ

)

1

λ

]

4.4 Examples

Some examples of analytical solutions

4.5 Limitations of axial stretch

A cylindrical tensile bar with initial length l0 and initial cross-sectional area A0 is loaded with
an axial force F . The elongation is described by the stretch ratio λ = l

l0
. The contraction is

described by the stretch ratio µ =
√

A
A0

.

The material is homogeneous and the elastic behavior is described by a linear relation
between the Cauchy stress σ and the Green-Lagrange strain εgl = 1

2 (λ2 − 1).

σ = C (λ2 − 1) with C = constant > 0

In each direction the same strain definition must be used, so the contraction strain is

εd = 1
2(µ2 − 1)

When the contraction strain is related to the axial strain with Poisson’s ratio ν, we have

εd = 1
2(µ2 − 1) = −νεgl = −ν 1

2(λ2 − 1) → µ2 = 1 − ν(λ2 − 1)



When Poisson’s ration is assumed to be constant, the axial elongation is limited because the
cross-sectional area obviously cannot become zero.

1 − ν(λ2 − 1) = 0 → ν(λ2 − 1) = 1 → λ2 − 1 =
1

ν
→ λ2 =

1 + ν

ν
→ λ =

√

1 + ν

ν

When the cross-sectional area is plotted as a function of λ with the value ν = 0.25, we clearly
see the limit value for λ where A = 0.
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Fig. 4.11 : Cross-sectional area versus stretch ratio.

The axial force F can be calculated and expressed as function of λ.

F = σA = σµ2A0 = σ
{

1 − ν(λ2 − 1)
}

A0

= CA0{1 − ν(λ2 − 1)}(λ2 − 1)

When we plot this relation for values ν = 0.25 and A0 = 1, it becomes clear that the proposed
material law has some physical inconsistencies.
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Fig. 4.12 : Axial force versus stretch ratio.



The volume change ratio is :

J = λµ2 = λ
{

1 − ν(λ2 − 1)
}

When the material is assumed to be incompressible, J = 1 and Poisson’s ratio ν cannot be
constant any more but is a function of λ :

µ2 =
1

λ
= 1 − ν(λ2 − 1) →

ν(λ2 − 1) = 1 − 1

λ
=
λ− 1

λ
→ ν =

λ− 1

λ(λ2 − 1)
=

1

λ(λ+ 1)

For very small elongations, the value of ν becomes 1
2 , which is already known from three-

dimensional Hooke’s law for linear elasticiy.

4.6 Instability and localisation

A tensile test has revealed that the elastic behavior of a material is described very well by a
linear relation between the engineering stress σn and a nonlinear function of the elongation
factor λ.

σn = C
1

λ
ln(λ) with σn = engineering stress

C = elasticity constant > 0
λ = axial elongation factor

The undeformed cross-sectional area of the truss is A0. Poisson’s ratio is ν and is assumed
to be constant.

The relation between the axial force F and the axial stretch factor λ is

F = C A0 λ
−1 ln(λ)

For values C = 1000 and A0 = 1, this relation is shown in the figure below.
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Fig. 4.13 : Axial force versus stretch ratio.



The value for λ for which the axial force reaches the maximum value can be determined by
differentiation.

dF

dλ
= CA0

{

− 1

λ2
ln(λ) +

1

λ2

}

= CA0
1

λ2
(1 − ln(λ))

dF

dλ
= 0 → ln(λ) = 1 → λ = e = ±2.7

The maximum value of the force is

Fmax = F (λ = e) = CA0
1

e
ln(e) = CA0

1

e

When this maximum is reached, the deformation increases while the load deminishes. Because
in a real material there will always be some inhomogeneity, e.g. a cross-section with a slightly
smaller area, or with a slightly lower value of C, The maximum will be reached there first. All
the elongation will then be concentrated in this weakest cross-section, a phenomenon which
is refered to as localisation.

4.7 Inflating a spherical balloon

A spherical balloon has an inner diameter D0 and a uniform wall thickness w0 ≪ D0 in the
undeformed state. The balloon is loaded with an internal pressure p whereupon it deformes
homogeneously to have an inner diameter D and wall thickness w.

To describe the mechanics of the balloon, we use three coordinate axes : two perpendicular
tangential directions t and the radial direction r, as is shown in the figure below for the
deformed state.

r

t

t

σt

p

Fig. 4.14 : Balloon in deformed state.

The wall of the balloon is made from elastomeric material, the behavior of which is charac-
terised by the Neo-Hookean elastic energy function, expressed in the principal stretch ratios
λ1, λ2 and λ3 :

W = C10

{

λ2
1 + λ2

2 + λ2
3 − 3

}

where C10 is a positive valued material constant. The material is incompressible.



In the case of the pressurized balloon, the principal directions of deformation are the perpen-
dicular tangential directions and the radial direction in each point of the ballon wall, so we
have :

λ1 = λ2 = λt =
D

D0
= λ and λ3 = λr =

w

w0

With the knowledge that the material is incompressible, the elastic energy function can be
expressed in the tangential elongation factor λ.

J = λ1λ2λ3 = λ2
t λr = 1 → λr =

1

λ2
t

→

W = C10

(

λ2
t + λ2

t + λ2
r − 3

)

= C10

(

2λ2 +
1

λ4
− 3

)

The principal stress directions coincide with the principal strain directions and are :

σ1 = σ2 = σt and σ3 = σr ≈ 0

For the isotropic hyperelastic model, the incremental specific elastic energy can be written as

dW = σ1dεln1
+ σ2dεln2

+ σ3dεln3
= 2σt dεlnt → σt = 1

2

dW

dεlnt

The tangential stress σt is then expressed in λ.

σt = 1
2

dW

dλ
λ = 2C10

(

λ2 − 1

λ4

)

From equilibrium in the deformed state, the relation between the internal pressure p and the
tangential stress σt is derived.

p = 4σt
w

D

The internal pressure can then be expressed in λ and the initial dimensions D0 and w0.

p = 4σt
w

D
= 8C10

w0

D0

(

λ2 − 1

λ4

)

1

λ3
= 8C10

w0

D0

(

1

λ
− 1

λ7

)

The plot of pagainstλ for 1 ≤ λ ≤ 6 shows a clearly nonlinear relation. This nonlinearity
comes from the large reduction of the load-carrying wall thickness and also from the nonlinear
material behavior.
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Fig. 4.15 : Pressure versus diameter change.

4.8 Stress update

The relation between σ and λ can be used to update the stress directly when the strain is
known.

σ = σ(λ)

4.9 Stiffness

The material stiffness is determined by taking the derivative of the stress with respect to the
elongation ratio or the strain.

Cλ =
∂σ

∂λ

4.10 Implementation

See the files tr2delas.m and tr2delam.m for the implementation of the elastic and elastomeric
material models.

4.11 Examples

A truss is loaded axially with a prescribed elongation/force. The initial length l0 of the truss
is 100 mm and the initial cross-sectional area A0 is 10 mm2. The axial force/elongation is
calculated. The cross-sectional area will change as a function of the elongation.

Fig. 4.16 : Tensile loading of truss element



For all elastic models the elastic constant is taken C = 100000 MPa and Poisson’s ratio ν is
0.3. The stress-elongation results are shown in the next figures. The models with a linear
relation between stress (σ or P ) and Green-Lagrange strain, clearly lack a physically realistic
description of the material behavior during compression.
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Fig. 4.17 : Stress versus λ for σ ∼ εl and σ ∼ εln models
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Fig. 4.18 : Stress versus λ for σ ∼ εgl and P ∼ εgl models

The axial force and the cross-sectional area are calculated and shown in the next figures as a
function of the elongantion. The cross-sectional areas of some models become zero and even
negative, which clearly shows the limited use of these models.
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Fig. 4.19 : Axial force and cross-sectional area versus the elongation for σ ∼ εl model
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Fig. 4.20 : Axial force and cross-sectional area versus the elongation for σ ∼ εln model
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Fig. 4.21 : Axial force and cross-sectional area versus the elongation for σ ∼ εgl model
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Fig. 4.22 : Axial force and cross-sectional area versus the elongation for P ∼ εgl model



For the elastomeric Neo-Hookean and Mooney-Rivlin models the material constants are :
C10 = 20000 MPa and C01 = 20000 MPa. Stress versus elongation is shown.
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Fig. 4.23 : Stress versus λ for Neo-Hookean and Mooney-Rivlin models

The axial force is calculated for a prescribed axial elongation.
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Fig. 4.24 : Axial force and cross-sectional area versus the elongation for Neo-Hookean and
Mooney-Rivlin model



5 Elastoplastic material behavior

Below a certain load (stress) value, the deformation of all materials will be elastic. When
the stress exceeds a limit value, plastic deformation occurs, which means that permanent
elongation is observed after release of the load. At increased loading above the limit value, the
stress generally increases with increasing elongation, a phenomenon referred to as hardening.

Reversed loading will first result in elastic deformation, but after reaching a limit value of
the stress, plastic deformation will be observed again. Looking at the stress-strain curve after
a few loading reversals, it can be seen that elastoplastic material behavior is history dependent:
the stress is not uniquely related to the strain; its value depends on the deformation history.
The total stress-strain history must be taken into account to determine the current stress.

σ

εε

σσ

σ

ε ε

Fig. 5.25 : Stress-strain curves for elastoplastic material behavior

5.1 Tensile test

When a tensile bar, with undeformed length l0 and cross-sectional area A0, is subjected to
a tensile test, the axial force F and the length l can be measured. The axial strain ε can
be calculated from the elongation factor λ. To calculate the true stress σ = F

A , the actual
cross-sectional area of the tensile bar must be measured during the experiment. The nominal
stress σn = F

A0
can be calculated straightforwardly. The nominal stress σn can be plotted

against the linear strain εl = λ− 1 = l−l0
l0

= ∆l
l0

resulting in the σn − εl stress-strain curve.
Until the proportionality limit σn = σP is reached, the material behavior is assumed to

be linear elastic : σn = Eε, where E is Young’s modulus. When the stress exceeds the initial
yield stress σy0 > σP , unloading will reveal permanent (= plastic) deformation of the bar.
The exact value of σy0 cannot be determined so in practice σy0 is taken to be the stress where
a plastic strain of 0.2 % remains. In the following however, we will assume that σy0 is exactly
known and that σy0 = σP .

The axial force and therefore the nominal stress will reach a maximum value. At that



point necking of the tensile bar will be observed. The maximum nominal stress is the tensile
strength σT . In forming processes strains can be much higher than in a tensile test, because
of the compression in certain directions.

After reaching the tensile strength the nominal stress will decrease while the strain is still
increasing. Fracture occurs at the fracture stress σn = σF . The fracture strain εF is for metals
and metal alloys about 10% = 0.1. This is a rather small elongation which means that for
these materials we can assume σ = σn and also that all strain definitions are approximately
equivalent, so ε = εl.

Experiments have shown that during plastic deformation the volume of metals and metal
alloys remains constant : plastic deformation is taken to be incompressible.

T

F

ε = 0.002 εℓ

σn

σP
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Fig. 5.26 : Stress-strain curve during tensile test

5.2 Compression test

For metal alloys a compression test instead of a tensile test will reveal that first yield will
occur at σ = σn = −σy0. The initial material behavior is the same in tension and compres-
sion. In general terms the transition from purely elastic behavior to elastoplastic behavior
is determined by a yield criterion. For the one-dimensional case this criterion says that first
yielding will occur when :

f = σ2 − σ2
y0 = 0

The function f is the yield function.



σ

ε

σy0

−σy0

Fig. 5.27 : Stress-strain curve during tensile or compression test

5.3 Interrupted tensile test

When the axial load is released at σA (see figure below) with σy0 < σA < σT , the unloading
stress-strain path is elastic and characterized by the initial Young’s modulus E. The perma-
nent or plastic elongation is represented by the plastic strain εp. The difference between the
total strain in point A and the plastic strain is the elastic strain εe = εA − εp = σA

E .
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εA
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σy

Fig. 5.28 : Stress-strain curve after interrupted tensile test



5.4 Resumed tensile test

When after unloading, the bar is again loaded with a tensile force, the elastic line BA will
be followed where ∆σ = E∆ε = E∆εe holds. For σ ≥ σA(ε ≥ εA) further elastoplastic
deformation takes place and the stress-strain curve will be followed as if unloading were not
occurred.

The stress σA is the current yield stress σy, which is generally larger then the initial
yield stress σy0. The increase, referred to as hardening, is related to the plastic strain by a
hardening law.

5.5 Hardening

To study the hardening phenomenon, the tensile bar is not reloaded in tension but in com-
pression. Two extreme observations may be made, illustrated in the figure below.

In the first case the elastic trajectory increases in length due to plastic deformation :
AA′ > Y0Y

′

0 . The elastic trajectory is symmetric about σ = 0 (BA = BA′). What we observe
is isotropic hardening.

In the second case the elastic trajectory remains of constant length : AA′ = Y0Y
′

0 . It
is symmetric about the line OC (CA = CA′). After unloading the yield stress under com-
pression is different than the yield stress under tension. This is called kinematic hardening.
The stress in point C, the center of the elastic trajectory, is the shift stress σ = q. This
phenomenon is also referred to as the Bauschinger effect.

Real materials will show a combination of isotropic and kinematic hardening.
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Fig. 5.29 : Isotropic and kinematic hardening

isotropic hardening : elastic area larger & symmetric w.r.t. σ = 0

tensile : σ = σy

compression : σ = −σy

}

→ f = σ2 − σ2
y = 0

kinematic hardening : elastic area constant & symmetric w.r.t. σ = q

tensile : σ = q + σy0

compression : σ = q − σy0

}

→ f = (σ − q)2 − σ2
y0 = 0



combined isotropic/kinematic hardening

tensile : σ = q + σy

compression : σ = q − σy

}

→ f = (σ − q)2 − σ2
y = 0

5.6 Effective plastic strain

Isotropic hardening could be described by relating the yield stress σy to the plastic strain εp.
However, as the figure below shows, this would lead to the unrealistic conclusion that the
yield stress increases while the plastic strain decreases. To prevent this problem, the effective
plastic strain ε̄p is taken as the history parameter. It is a measure of the total plastic strain,
be its change positive or negative, and as such cannot decrease.
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Fig. 5.30 : Increasing yield stress at decreasing plastic strain

ε̄p =
∑

ε

|∆εp| =
τ=t
∑

τ=0

|∆εp|
∆t

∆t =

∫ t

τ=0
|ε̇p| dτ =

∫ t

τ=0

˙̄εp dτ

5.7 Hardening laws

For one-dimensional stress states encountered in the axial loading of a truss, several hardening
laws are formulated, based on experimental observations. They can be generalized to three-
dimensional stress-strain states. For isotropic hardening the current yield stress is related to
the effective plastic strain and the initial yield stress. The isotropic hardening parameter is
H =

dσy

dε̄p
. For kinematic hardening the shift stress q is related to the plastic strain εp. The

kinematic hardening parameter is K = dq
dεp

.

linear isotropic hardening σy = σy0 +Hε̄p
q = 0



linear kinematic hardening σy = σy0

q = Kεp

exponential hardening σy = σy0 + C (ε̄p)
n

q = q(εp)

no hardening : ideal plastic σ = σy0

q = 0

5.8 Cyclic load

A truss can be loaded with a prescribed strain −εm ≤ ε ≤ εm. It is assumed that the stress
will reach values above the initial yield stress σy0 and that linear hardening occurs.

For purely isotropic hardening the stress will increase after each load reversal and finally
no further plastic deformation will take place.

For purely kinematic hardening the stress-strain path will be one single hysteresis loop,
where the stress cycles, as does the strain, between two constant values −σm ≤ σ ≤ σm.
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Fig. 5.31 : Stress-strain curve during cyclic loading for isotropic and for kinematic hardening

5.9 Examples

5.10 Reversed plasticity in a tensile bar

A cylindrical tensile bar is loaded with an axial stress σ, which is applied as a function of the
(pseudo)time t as indicated in the figure below.
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Fig. 5.32 : Prescribed stress as a function of (pseudo)time.

When the load is increased from t = 0, the material behaves linearly elastic – Young’s modulus
is E – until the iniial yield stress σy0 is reached. The maximum stress σ1 is such that σ1 > σy0.
After reaching this maximum value the stress is reduced to zero and compressive loading is
applied. After yielding, the material shows linear, isotropic hardening with hardening constant
H.

First the stress-strain diagram is plotted and relevant stress-strain points are indicated.
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Fig. 5.33 : Stress-strain diagram.



When the stress reaches the maximum value σ1 at t = t1 the strain ε1 can be calculated and
expressed in σ1, E, σy0 and H.

ε1 = εy0 +
E +H

EH
(σ1 − σy0) =

σy0

E
+
E +H

EH
(σ1 − σy0)

=
σy0

E

(

1 − E +H

H

)

+
E +H

EH
σ1

= − σy0

H
+
E +H

EH
σ1

The plastic strain εp1 at maximmum stress σ1 is

εp1 = ε1 −
σ1

E
= − σy0

H
+

(

E +H

H
− 1

)

σ1

E

=
σ1 − σy0

H

From t = t1 the stress is reduced to zero after which compression occurs. The strain ε2 at
yield under compressive loading is :

ε2 = ε1 − 2
σ1

E

The stress σ3 for which the plastic strain is zero, is :

εp3 = 0 → − (σ3 − σ2) = σ1 − σy0 = Hεp1 → σ3 = −2σ1 + σy0

5.11 Parallel truss structure

The figure shows two parallel bars a and b, which are connected to a rigid wall and to a rigid
block, which can only translate in horizontal direction. The bars have the same initial length
L. The cross-sectional area of a and b is A and 2A, respectively. Both a and b have the same
Young’s modulus E and initial yield stress σy0. Upon yielding bar a is ideal plastic, while bar
b shows isotropic linear hardening with hardening constant H.

2A

L A

δ

F

L

b

a

Fig. 5.34 : Parallel truss structure.



The axial deformation is provoked by the force F , which increases to a maximum value
after which it will be reduced to zero. The maximum is such that both trusses will undergo
elastoplastic deformation. The displacement of the rigid block is δ.

For all deformation states the strain in both trusses will be equal : εa = εb, due to the
fact that their initial length and their elongation is the same. With this in mind we draw the
stress-strain diagram of both bars below each other.
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Fig. 5.35 : Stress-strain diagrams of both trusses.

The force F0 at which yielding occurs for the first time, is

F0 = σy0A+ 2σy0A = 3σy0A

The strain ε0 and the displacement δ0 is

ε0 = εy0 =
σy0

E
→ δ0 = L

σy0

E

The force F is increased to F = F1 = 5
3F0. Because truss a doesn’t show any hardening, the

axial stress does not change : σa
1 = σa

0 = σy0, and thus F a
1 = σy0A. The axial force and the

stress in truss b is then :

F b
1 = F1 − F a

1 = 5σy0A− σy0A = 4σy0A → σb
1 = 2σy0

The strain εb1 in truss b and the displacement δ1 can now be calculated.

εb1 =
σy0

E
+
E +H

EH
σy0 =

σy0

E

(

1 +
E +H

H

)

=
σy0

E

(

E + 2H

H

)

δ1 = Lεb1 = L
σy0

E

(

E + 2H

H

)



The plastic strain of the trusses is

εap1 = εa1 − σy0

E
=
E +H

EH
σy0

εbp1 = εb1 −
2σy0

E
= −σy0

E
+
E +H

EH
σy0 =

σy0

E

(

−1 +
E +H

H

)

=
σy0

H

The force F is now reduced to zero. The residual stresses in both trusses can be calculated.

εa2 − εa1 =
1

E
(σa

2 − σa
1)

εb2 − εb1 =
1

E

(

σb
2 − σb

1

)

εa2 = εb2 ; εa1 = εb1































→ σa
2 − σa

1 = σb
2 − σb

1

σa
1 = σy0 ; σb

1 = 2σy0

→

σa
2 − σy0 = σb

2 − 2σy0 → σb
2 − σa

2 = σy0

equilibrium → σa
2A+ σb

22A = 0 → σa
2 = −2σb

2







→

3σb
2 = σy0 → σb

2 = 1
3σy0 ; σa

2 = −2
3σy0

5.12 Serial truss structure

A cylindrical truss is divided in two parts a and b as is shown in the figure below. In the
undeformed state, part a has length L and cross-sectional area 2A, part b has length 2L and
cross-sectional area A. In point R an axial force F ia applied. Point P is fixed and point R
will show a displacement δ.

2A

F

b
a

2LL

P
Q RA

Fig. 5.36 : Series configutation of two trusses.

For each state in the deformation process, we will have :

Na = N b → σa = 1
2 σ

b

When the load is increased from F = 0 at t = 0 the material is linearly elastic – Young’s
modulus E – as long as the axial stress is below the initial yield stress σy0. After yielding the
material will show linear isotropic hardening with hardening constant H.
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Fig. 5.37 : Stress-strain diagram of the two trusses.

When yielding occurs for the first time the force F0 is part b will yield first at a force

F0 = σy0A

The displacement δ0 at that moment is

σb
0 = σy0 → εb0 =

σy0

E
→ ∆Lb

0 = 2L
σy0

E

σa
0 = 1

2σy0 → εa0 =
σy0

2E
→ ∆La

0 = L
σy0

2E















→ δ0 = ∆La
0 +∆Lb

0 = 5
2 L

σy0

E

The load is increased to F = F1 > F0 when part a will yield for the first time.

σa
1 = σy0 → σb

1 = 2σy0 → F1 = 2σy0A

The displacement δ1 can than be calculated :

σa
1 = σy0 → εa1 =

σy0

E
→ ∆La

1 = L
σy0

E

εb1 = εby0 +
E +H

EH
σy0 =

σy0

E
+
E +H

EH
σy0 =

σy0

E

(

E + 2H

H

)

→ ∆Lb
1 = 2L

σy0

E

(

E + 2H

H

)











→

δ1 = ∆La
1 +∆Lb

1 = L
σy0

E
+ 2L

σy0

E

(

E + 2H

H

)

= L
σy0

E

(

2E + 5H

H

)

The force F is increased further to F = F2 = 6
5F1 = 12

5 σy0A and is subsequently reduced to
zero : F = F3 = 0. The residual plastic strain in each part can be determined.

σb
2 =

F2

A
= 12

5 σy0 → εb2 − εb1 =
E +H

EH
(σb

2 − σb
1) → εb2 = 1

5

σy0

EH
(7E + 12H)

σa
2 =

F2

2A
= 6

5 σy0 → εa2 − εa1 =
E +H

EH
(σa

2 − σa
1) → εa2 = 1

5

σy0

EH
(E + 6H)

εbp2 = εb3 = εb2 − 12
5

σy0

E
= 7

5

σy0

H
; εa2p = εa3 = εa2 − 6

5

σy0

E
= 1

5

σy0

H

The total displacement after unloading is

δ3 = ∆La
3 +∆Lb

3 = L 1
5

σy0

H
+ 2L 7

5

σy0

H
= 3L

σy0

H



5.13 Elastoplastic model

The elastoplastic deformation characteristics can be represented by a discrete mechanical
model. A friction element represents the yield limit and a hardening spring – stiffness H
(H > 0) – provides the stiffness reduction after reaching the yield limit. The elastoplastic
model describes rate-independent plasticity – there is no dashpot in the discrete model –, so
the time is fictitious and ”rate” is just referring to momentary change.

The yield criterion is used to decide at which stress level a purely elastic deformation will
be followed by elastoplastic deformation. During elastoplastic deformation the total strain
rate (ε̇) is additively decomposed in an elastic (ε̇e) and a plastic (ε̇p) part. The plastic

strain rate ε̇p is related to ∂f
∂σ by the rate of the plastic multiplier λ, the so-called consistency

parameter λ̇. During ongoing plastic deformation the consistency equation ḟ = 0 must be
satisfied, because f must remain zero.

The hardening law relates the current yield stress σy to the initial yield stress σy0 and
the effective plastic strain ε̄p. The shift stress q is related to the plastic strain εp.

H

σy

εeεp

σE

Fig. 5.38 : Discrete mechanical model for elastoplastic material behavior

• f = (σ − q)2 − σ2
y with f < 0 | f = 0 ∧ ḟ < 0 → elastic

f = 0 ∧ ḟ = 0 → elastoplastic

• σy = σy(σy0, ε̄p) ; q = q(εp)

• ε̇ = ε̇e + ε̇p

• σ = Eεe → ε̇e =
1

E
σ̇

• ε̇p = λ̇
∂f

∂σ
= 2λ̇(σ − q) ; ˙̄εp = |ε̇p| = 2λ̇ |σ − q|

• ε̄p =

∫ t

τ=0

˙̄εp dτ =
∑

t

|∆εp|

5.14 Constitutive equations

From the constitutive relations a set of constitutive equations can be derived.

σ̇ = Eε̇e = E(ε̇ − ε̇p) = E{ε̇− 2λ̇(σ − q)}
f = 0







→



σ̇ + 2E(σ − q)λ̇− Eε̇ = 0

f = 0







The current stress has to be determined from these constitutive equations. The first one is
a differential equation in pseudo-time. To solve it we use the incremental approach, where
the total time is discretized and where we assume to have reached a solution for the begin-
increment time tn, i.e. values at the beginning if the current increment are known.

Although very general solution procedures can be used, we first consider a specisl case. It
is assumed that the stress state at both the begin-increment time and the end-increment time
is on the yield trajectory. Also linear hardening is considered, first isotropic then kinematic.

5.15 Linear isotropic hardening

For linear isotropic hardening with constant hardening parameter H, the stress increment can
be derived straightforwardly. In a point of the elastic trajectory we know that ∆σ = E∆ε
holds. In a point of the elastoplastic trajectory we can write ∆σ = S∆ε, where the material
stiffness S = Cε will depend on E and H.

∆εe

∆σ

σ

ε

∆ε

A

B

∆εp

Fig. 5.39 : Stress-strain curve for monotonic tensile loading

∆σ = E∆εe = E(∆ε−∆εp) = E

(

∆ε− ∆σy

H

)

= E

(

∆ε− ∆σ

H

)

→

∆σ =
EH

E +H
∆ε = S∆ε ; ∆εp =

∆σ

H
=

E

E +H
∆ε



5.16 Kinematic hardening

For linear kinematic hardening, the result is similarly derived.

∆σ =
EK

E +K
∆ε ; ∆εp =

1

K
∆σ =

E

E +K
∆ε

Again these relations can be derived straightforwardly from the figure.

∆σ = E∆εe = E(∆ε−∆εp) = E

(

∆ε− ∆q

K

)

= E

(

∆ε− ∆σ

K

)

→

∆σ =
EK

E +K
∆ε = S∆ε ; ∆εp =

∆σ

K
=

E

E +K
∆ε

Note that the stiffness equals Young’s modulus when H (or K) approaches infinity.

5.17 Stress update

In a general case of elastoplastic deformation, the begin-increment state, indicated with index
n, may reside on the elastic trajectory or on the elastoplastic trajectory. The end-increment
state is indicated with an index n+1 but this is skipped furtheron Depending of ∆ε = ε− εn
(further) elastoplastic deformation or elastic unloading can occur. Several possibilities are
indicated in the figure below.
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(1)
n+ 1

n+ 1

n

σ

ε

n

(4)

n

n+ 1

ε

σ

ε

ε

σ

(2)

n+ 1

n

σ

Fig. 5.40 : Various incremental stress-strain changes



5.18 Elastic stress predictor

Because it is not known a priori whether (ongoing) elastoplastic deformation or elastic unload-
ing will have taken place in the current increment tn→tn+1, the stress calculation starts from
the assumption that the strain increment is completely elastic. The elastic stress predictor σe

is calculated and subsequently the yield criterion is evaluated with the yield function f .

σe = σn + E(ε− εn)

• f = (σe − qn)2 − σ2
yn

≤ 0 → elastic increment

• f = (σe − qn)2 − σ2
yn
> 0 → elastoplastic increment

5.19 Elastic increment

When the increment is fully elastic, the end-increment stress equals the calculated elastic
stress. As no plastic deformation has occurred during the increment, the effective plastic
strain and the yield stress remain unchanged.

σ(tn+1) = σe ; ε̄p(tn+1) = ε̄p(tn) = ε̄pn

σy(tn+1) = σy(tn) = σyn ; q(tn+1) = q(tn) = qn

5.20 Elastoplastic increment

If the elastic stress predictor indicates that the yield criterion is violated, the increment is
elastoplastic. The end-increment stress has to be determined by integration of the constitutive
equations, such that at the end of the increment the stress satisfies the yield criterion as will
be discussed.

There are many procedures which can be followed to solve the differential equation for
the stress. They can be classified as implicit or explicit. The implicit methods are more
accurate and more stable then the explicit methods.

We assume that the begin-increment state resides on the yield trajectory, so fn = 0. In
reality this is of course not always the case : the begin-increment case may be elastic (fn < 0)
and plastic deformation will develop during the increment. The implicit procedures can well
cope with this phenomenon. Explicit procedures will need some correction.

5.21 Implicit solution procedure

In an implicit procedure we want to satisfy the constitutive equations at the current time,
which is the end-increment time. Because various variables are unknown, the equations are
non-linear and have to be solved iteratively. Remember that at the begin-increment time, the
equations are satified – in the former increment – so all values are known and fn ≤ 0.

In an iterative approach, an unknown value is written as the sum of an approximate value



and an iterative change, which is assumed to be very small, allowing linearisation. Concerning
the yield function, it has to be recalled that it depends on the stress σ, the shift stress q and
the yield stress σy and that both the yield stress and the shift stress depend on the plastic
strain – through the hardening law – and thus on λ.

σ − σn + 2E(σ − q)(λ− λn) = E(ε − εn)

f − fn = f = 0







σ∗ + δσ − σn + 2E(σ∗ + δσ − q∗ − δq)(λ∗ + δλ− λn) = E(ε − εn)

f∗ + δf = 0 → f∗ +
∂f

∂σ
δσ +

∂f

∂λ
δλ = 0







with

∂f

∂σ
= 2(σ − q)

∂f

∂λ
=
∂f

∂q

∂q

∂εp

∂εp
∂λ

+
∂f

∂σy

∂σy

∂ε̄p

∂ε̄p
∂λ

= [−2(σ − q)][K][2(σ − q)] + [−2σy][H][2|σ − q|]
= −4K(σ − q)2 − 4Hσy|σ − q|

this becomes

σ∗ + δσ − σn + 2E(σ∗ + δσ − q∗ − δq)(λ∗ + δλ− λn) = E(ε− εn)

f∗ + 2(σ∗ − q∗)δσ − [4K∗(σ∗ − q∗)2 + 4H∗σ∗y|σ∗ − q∗|]δλ = 0







After linearization and solving the unknown δσ and δλ until convergence is reached, the result
is a new approximate value for σ, εp, q and σy at the end of the increment.

σ∗ = σ∗ + δσ

λ∗ = λ∗ + δλ

∆εp = 2(λ∗ − λn)(σ∗ − qn) → εp → q∗,K∗

∆ε̄p = |∆εp| → ε̄p → σ∗y ,H
∗

5.22 Stiffness

From the solution procedure, also a relation for the material stiffness Cε = ∂σ
∂ε can be derived.



{

σ − σn + 2E(σ − q)(λ− λn) − E(ε − εn) = 0
f = 0

{

δσ + 2Eδσ(λ − λn) + 2E(σ − q)δλ− Eδε = 0

(σ − q)δσ − 2K(σ − q)2δλ− 2Hσy|σ − q|δλ = 0
[

1 + 2E(λ− λn) +
2E(σ − q)2

2K(σ − q)2 + 2Hσy|σ − q|

]

δσ = Eδε

Cε =
E{2K(σ − q)2 + 2Hσy|σ − q|}

{1 + 2E(λ − λn)}{2K(σ − q)2 + 2Hσy|σ − q|} + 2E(σ − q)2

yield at τ = t = tn+1 → (σ − q)2 = σ2
y and |σ − q| = σy →

Cε =
E(K +H)

E +K +H + 2E(K +H)(λ− λn)

5.23 Explicit solution procedure

An explicit procedure starts from the known state at the beginning of the increment and
calculates incremental changes directly, assuming that values of some variables remain the
same during the increment. Obviously, this is not through, so these procedures are not very
accurate. The final solution may not satisfy the yield criterion f = 0 exactly, which calls for
a correction, where the final state is projected onto the yield trajectory.

∆σ + 2E(σn − qn)∆λ = E∆ε

∆f = 0 → ∂f

∂σ

∣

∣

∣

∣

n

∆σ +
∂f

∂λ

∣

∣

∣

∣

n

∆λ = 0











∆σ + 2E(σn − qn)∆λ = E∆ε

2(σn − qn)∆σ − 4Kn(σn − qn)2∆λ− 4Hnσyn|σn − qn|∆λ = 0 →

∆λ =
(σn − qn)

2Kn(σn − qn)2 + 2Hnσyn|σn − qn|
∆σ =

1

2Kn(σn − qn) + 2Hn(σn − qn)
∆σ



































→

∆σ =
E[Kn(σn − qn)2 +Hnσyn|σn − qn|]

Kn(σn − qn)2 +Hnσyn|σn − qn| + E(σn − qn)2
∆ε

∆εp = 2(σn − qn)∆λ =
(σn − qn)2

Kn(σn − qn)2 +Hnσyn|σn − qn|

When we calculate the stress from the equations above, it is found that the result is not
correct due to the bad transition from the elastic to the elastoplastic regime. To solve this
problem, the elastoplastic increment is split in an elastic and an elastoplastic part.

A scaling factor β is calculated from the requirement that β(ε − εn) brings us to the
yield trajectory where ε = εf . This strain to yield εf is determined, and the current stress is



calculated, using the current stiffness. Calculation of β is generalized for tension and pressure.
Notice that sign(α) is the sign of α.

ε
εf

σyn + qn

σe

σ

ε

σn

σ

εn

qn

Fig. 5.41 : Explicit stress update by increment splitting

σe = σn + E(ε− εn) → ∆σe = σe − σn = E(ε − εn)

β =
| sign(ε− εn)σyn − (σn − qn)|

|σe − σn|
εf = εn + β(ε − εn) → ∆εf = ε− εf = (1 − β)(ε− εn)

The elastoplastic stress increment ∆σf and the increment of λ is now calculated from the
constitutive equations. The total stress increment and other state variables can then be
calculated.







∆σf + 2E(σn − q)∆λ = E∆εf

2(σn − q)∆σf − 4Kn(σn − qn)2∆λ− 4Hnσyn|σn − qn|∆λ = 0

The incremental changes are then :

∆σ = β∆σe +∆σf → σ = σn +∆σ

λ = λn +∆λ

∆εp = 2(λ− λn)(σ − qn) → εp → q,K

∆ε̄p = |∆εp| → ε̄p → σy,H



5.24 Implementation

See tr2delpl.m for the implementation.

5.25 Examples

5.26 Cyclic loading

The stress-strain behavior of a truss is calculated for a prescribed cyclic strain, for linear
isotropic and linear kinematic hardening. The truss has initial length l0 = 100 mm and cross-
sectional area A0 = 10 mm2 and is loaded with a prescribed cyclic axial strain. The axial
stress is calculated. Material parameters are :

Young’s modulus E 100000 MPa
Poisson’s ratio ν 0.3 -
initial yield stress σy0 250 MPa
hardening coefficient H 5000 MPa
hardening coefficient K 5000 MPa

The isotropic hardening leads to an increasingly larger elastic trajectory. After many load
reversals, the behavior will become purely elastic. The kinematic hardening results in a steady
state hysteresis loop.
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Fig. 5.42 : Cyclic stress-strain behavior for linear isotropic and kinematic hardening



5.27 Clamped truss

A prismatic truss is clamped between two rigid walls, as is shown in the figure. The length L
of the truss is 2 × 1000 [mm], its cross-sectional area A is 100 mm2. The material is elastic
with Young’s modulus E = 200000 N/mm2 as long as the axial stress is below the initial yield
stress of 200 N/mm2. Above this value the material shows linear isotropic hardening with
hardening coefficient H = 1000 M/mm2.

In the middle of the truss, in point Q, a point load F is applied, which first increases
and then is decreased to zero. The displacement of point Q is calculated with tr2d. The
force F as function of the displacement is shown in the figure below.
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Fig. 5.43 : Force F versus displacement of point Q.

5.28 Truss structure

A structure of three trusses is loaded by a vertical displacement. When the axial stress exceeds
a certain limit value, a trusses will deform plastically.
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Fig. 5.44 : Force F versus displacement δ.



6 Linear viscoelastic material behavior

Viscoelastic materials show time dependent behavior. When during a tensile test the stress/-
strain is prescribed stepwise, the strain/stress will not react immediately, but show a delayed
response, which is called creep/relaxation. Viscoelastic material behavior is a combination of
elastic and viscous behavior. Both cases will be illustrated first.

Here, we only consider linear viscoelastic behavior and also assume that strains are small.

6.1 Linear elastic material behavior

For a linear elastic material the stress is uniquely related to the strain by the Young’s modulus
E [Pa]. The linear elastic truss behaves like a spring with constant stiffness k [N/m].

t1

N N

σ ε σ

εttt0 t0 t1

Fig. 6.45 : Tensile experiment for linear elastic truss

ε =
1

E
σ → σ = Eε → N = σA = EAε =

EA

l
∆l = k ∆l

A linear elastic material can be subjected to a loading stress cycle. The work per unit of
volume during the cycle appears to be zero indicating that there has been no dissipation.
This is also obvious when looking at the stress-strain curve associated with the load cycle :
the area below the curve is zero.

t0

σ ε σ

ε

t t

t0

t1 t2 t2t1

Fig. 6.46 : Loading cycle applied to linear elastic truss



Ud =

∫ t1

t0

σ dε+

∫ t2

t1

σ dε =

∫ t1

t0

Eεdε +

∫ t2

t1

Eεdε

= 1
2E[ε21 − ε20 + ε22 − ε21] = 0

6.2 Linear viscous material behavior

For a linear viscous material the stress is uniquely related to the strain rate by the viscosity
η [Pa.s]. The linear viscous ”truss” behaves like a dashpot with constant damping value b
[Ns/m].
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N N
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t1t0 t1

Fig. 6.47 : Tensile experiment for linear viscous truss

ε̇ =
1

η
σ → σ = ηε̇ → N = σA = ηAε̇ =

ηA

l
∆̇l = b ∆̇l

The linear viscous material is subjected to a loading stress cycle. The work per unit of volume
can be calculated and appears to be non-zero. All the work is dissipated as can be seen from
the stress-strain curve : the area included by the stress-strain trajectory represents the specific
dissipated energy.
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Fig. 6.48 : Loading cycle applied to linear viscous truss



Ud =

∫ t1

t0

σ dε+

∫ t2

t1

σ dε =

∫ t1

t0

ηε̇ dε+

∫ t2

t1

ηε̇ dε =

∫ t1

t0

ηc dε −
∫ t2

t1

ηc dε

= ηc[ε1 − ε0 − ε2 + ε1] = 2ηca

6.3 Viscoelastic material behavior

Viscoelastic material behavior is a combination of elastic and viscous behavior. Part of the
deformation energy will be dissipated, while the rest is stored as reversible elastic energy.
Viscoelastic behavior can be characterized by mechanical models build from springs and
dashpots.

We will assume the deformation to be small, so that the choice of stress and strain
definitions is irrelevant. First the characteristics of the viscoelastic material behavior will be
described, based on experimental observations. To predict the behavior, viscoelastic models
are needed, which will be based on the behavior of springs and dashpots.
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Fig. 6.49 : Stress-strain curves for viscoelastic material behavior

To investigate the characteristics of viscoelastic material behavior, a tensile test is carried out,
where a tensile bar is loaded with stress excitations, which are prescribed as a step-function
in time.



6.4 Proportionality

In a tensile test, a stress-step is applied and the strain is measured as a function of time.
The test is repeated for increased stress amplitudes. From the measurement data, the strain
values at the same time after loading are plotted against the stress amplitudes. The resulting
plots are isochrones, because they represent the strain at the same time after loading.

For linear viscoelastic material behavior the isochrones are straight lines. This means
that the strain as a function of time is proportional to the stress. The strain response can
be written as the product of the stress amplitude ∆σ and a function of the time D(t − t0),
whose value is zero for t < t0.
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Fig. 6.50 : Proportionality of strain response and stress excitation

ε(t) = ∆σD(t− t0) for ∀ t ≥ t0

6.5 Superposition

A tensile test is carried out three times. In the first two tests, a stress step with different
amplitude is applied and the strain response is measured. Then, in the third experiment, the



two stress steps are applied subsequently and again the strain response is measured.
For linear viscoelastic material behavior, the strain response in the third experiment

is the sum of the separate responses in the first two experiments. This means that strain
responses can be determined by superposition.

t1

σ

∆σ0
∆σ1

tt0 t1

ε

tt0

Fig. 6.51 : Superposition of strain responses to two stress excitations

separate excitations

∆σ = ∆σ0 → ε(t) = ∆σ0D(t− t0) for t > t0

∆σ = ∆σ1 → ε(t) = ∆σ1D(t− t1) for t > t1

subsequent excitations

∆σ = ∆σ0 → ε(t) = ∆σ0D(t− t0) for t0 < t < t1

∆σ = ∆σ0 +∆σ1 → ε(t) = ∆σ0D(t− t0) +∆σ1D(t− t1) for t > t1

6.6 Boltzmann integral

Linear viscoelasticity is characterized by the two properties described in the previous sections.

1. proportionality : At every time the strain response is proportional to the amplitude
of a constant stress step which is applied at t = t0 : εi(t) = ∆σiD(t− t0) for t > t0

2. superposition : The strain response to two subsequently (at time t = t0 and t = t1)
applied constant amplitude (∆σ0 and ∆σ1) stress steps equals the sum of the separate
responses for t > t1 : ε(t) = ∆σ0D(t− t0) +∆σ1D(t− t1) for t > t1

Every stress excitation can be seen as an infinite sequence of infinitesimal small stress steps.
The superposition property then leads to the Boltzmann integral expressing the strain re-
sponse. This integral is also called Duhamel or memory integral.
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Fig. 6.52 : Superposition of strain responses to subsequent stress excitations

ε(t) = ∆σ0D(t− t0) +∆σ1D(t− t1) +∆σ2D(t− t2) + ..

=

n
∑

i=1

∆σiD(t− ti) → limit n→∞ (t→τ)

=

∫ t

τ=t−
0

D(t− τ) dσ(τ) =

∫ t

τ=t−
0

D(t− τ)
dσ(τ)

dτ
dτ

ε(t) =

∫ t

τ=t−
0

D(t− τ)σ̇(τ) dτ

For strain excitation and stress response the same observations can be made and we arrive at
the Boltzmann integral for the stress response.

σ(t) =

∫ t

τ=t−
0

E(t− τ)ε̇(τ) dτ

6.7 Step excitations

Step excitations are important for the (experimental) characterization of viscoelastic materi-
als. A unit step (amplitude = 1) can be described with the Heaviside function. The derivative
of the unit step function is the Dirac function or unit pulse. It has the important property
that integration of the product of a function f(τ) and δ(τ, t∗) over an interval which contains
τ = t∗, the ”location” of the Dirac pulse, results in the value f(t∗).

Heaviside function H(t, t∗)

{

t < t∗ : H(t, t∗) = 0
t > t∗ : H(t, t∗) = 1

}

H

tt∗0

1

Fig. 6.53 : Unit step or Heaviside function



Dirac function δ(t, t∗) =
d

dt
{H(t, t∗)}

∫ t>t∗

τ=0
δ(τ, t∗) dτ = 1 ;

∫ t>t∗

τ=0
f(τ)δ(τ, t∗) dτ = f(t∗)

tt∗0

δ

Fig. 6.54 : Unit pulse or Dirac function

6.8 Creep (retardation)

The strain response to a stress step excitation at t = 0 having an amplitude σ0 equals σ0D(t).
The measured strain response can be used to fit a proposed model for D(t). Experiments
have revealed some characteristic properties.

σ(t) = σ0H(t, 0) → σ̇(t) = σ0δ(t, 0)

ε(t) =

∫ t

τ=0−
D(t− τ)σ̇(τ) dτ =

∫ t

τ=0−
D(t− τ)σ0δ(τ, 0) dτ = σ0D(t)

t

ε

ε0

00 t

σ

σ0

Fig. 6.55 : Creep strain response to unit stress step

• Ḋ(t) ≥ 0 ∀ t ≥ 0

• D̈(t) < 0 ∀ t ≥ 0



6.9 Relaxation

The stress response to a strain step excitation at t = 0 having an amplitude ε0 equals ε0E(t).
The measured stress response can be used to fit a proposed model for E(t). Experiments
have revealed some characteristic properties.

ε(t) = ε0H(t, 0) → ε̇(t) = ε0δ(t, 0)

σ(t) =

∫ t

τ=0−
E(t− τ)ε̇(τ) dτ =

∫ t

τ=0−
E(t− τ)ε0δ(τ, 0) dτ = ε0E(t)

0

ε0

0 t

ε σ

σ0

t

Fig. 6.56 : Stress relaxation response to unit strain step

• Ė(t) ≤ 0 ∀ t ≥ 0

• Ë(t) > 0 ∀ t ≥ 0

•
∫

∞

t=0
Ė(t) dt ≥ 0 → limt→∞ Ė(t) = 0

6.10 Harmonic strain excitation

For the experimental characterization of viscoelastic materials, harmonic excitation is of great
importance. We consider first a tensile test where the strain is prescribed harmonically with
an angular frequency ω [rad s−1] and amplitude ε0.

ε(t) = ε0 sin(ωt) → ε̇(t) = ε0ω cos(ωt)

t

ε

ε0

T

Fig. 6.57 : Harmonic strain excitation



6.11 Stress response

The stress response to the harmonic strain excitation can be calculated using the Boltzmann
integral. Evaluating the integral involves transformation to another integration variable.

The result reveals two important viscoelastic material parameters : the storage modulus
E′ and the loss modulus E′′, which both are a function of the angular frequency ω. They can
be measured with a Dynamic Mechanical Analysis (DMA) experiment and transformed into
a relaxation function E(t). This experiment is more easy to perform and more accurate than
the direct measurement of E(t) in a relaxation experiment.

σ(t) =

∫ t

τ=−∞

E(t− τ)ε0ω cos(ωτ) dτ = ε0ω

∫ t

ξ=−∞

E(t− τ) cos(ωτ) dτ

t− τ = s → τ = t− s → dτ = −ds
= ε0ω

∫

∞

s=0
E(s) cos{ω(t− s)} ds

cos(ωt− ωs) = cos(ωt) cos(ωs) + sin(ωt) sin(ωs)

= ε0

[

ω

∫

∞

s=0
E(s) sin(ωs) ds

]

sin(ωt) + ε0

[

ω

∫

∞

s=0
E(s) cos(ωs) ds

]

cos(ωt)

= ε0E
′ sin(ωt) + ε0E

′′ cos(ωt)

E′(ω) = ω

∫

∞

s=0
E(s) sin(ωs) ds : storage modulus

E′′(ω) = ω

∫

∞

s=0
E(s) cos(ωs) ds : loss modulus

6.12 Energy dissipation

The dissipated energy per unit of volume during one period of the harmonic strain excitation
can be calculated. This dissipated energy must always be positive. As shown below, it must
be concluded that the loss modulus E′′ is also positive.

Referring to the calculated stress response, we can conclude that the stress at time t = 0
where the strain was taken to be ε = 0, has a positive value. We thus have proved something
which we already knew from experiments : there is a phase difference between strain and
stress and the stress shows a gain w.r.t. the strain.

Ud =

∫ ε(T )

ε(0)
σ dε =

∫ T

t=0
σε̇ dt

=

∫ T

t=0

{

ε0E
′ sin(ωt) + ε0E

′′ cos(ωt)
}

{ε0ω cos(ωt)} dt

=

∫ T

t=0
ε20ω

{

E′ sin(ωt) cos(ωt) + E′′ cos2(ωt)
}

dt

=

∫ T

t=0
ε20ω

{

1
2E

′ sin(2ωt) + 1
2E

′′ + 1
2E

′′ cos(2ωt)
}

dt



= 1
2ε

2
0ω

[

−E′
1

2ω
cos(2ωt) + E′′t+E′′

1

2ω
sin(2ωt)

]T=
2π
ω

0

= 1
2ε

2
0ω

[

−E′
1

2ω
+ E′

1

2ω
+ E′′

2π

ω

]

= πε20E
′′ > 0 ⇒ E′′ > 0 →

σ(t = 0) = ε0E
′′ > 0

The phase difference between stress and strain results in a so-called hysteresis loop, when a
stress-strain diagram is drawn. The area enclosed by the hysteresis loop is a measure for the
dissipated energy per unit of volume during one cycle.
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Fig. 6.58 : Harmonic strain excitation and stress response
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Fig. 6.59 : Hysteresis of stress ans strain



6.13 Relation between E ′, E ′′ and δ

Writing the stress response with two different relations, results in relations between E′, E′′

and δ. The amplitude σ0 of the stress response can also be calculated.

σ(t) = σ0 sin(ωt+ δ) = σ0 cos(δ) sin(ωt) + σ0 sin(δ) cos(ωt)

σ(t) = ε0E
′ sin(ωt) + ε0E

′′ cos(ωt)

storage and loss modulus

E′ =
σ0

ε0
cos(δ)

E′′ =
σ0

ε0
sin(δ)















→



















E′′

E′
= tan(δ) →

δ = arctan

(

E′′

E′

)

amplitude σ0 = ε0
√

(E′)2 + (E′′)2

6.14 Measured E ′, E ′′ and tan(δ)

Typical measured values for E′(ω), E′′(ω) and tan(δ) are shown in the plots below. For low
and high frequencies, the loss modulus is zero, indicating that there is no dissipation and the
material behaves elastically. For high frequencies, the ”stiffness” E′ is much higher than for
low frequencies.

Storage and loss moduli can be measured accurately using DMA test equipment. From
E′(ω) and E′′(ω), the relaxation function E(t) can be calculated using dedicated software.
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Fig. 6.60 : Characteristic values of E′, E′′ and tan(δ)



6.15 Harmonic stress excitation

The axial stress can be prescribed harmonically with an angular frequency ω [rad s−1]. The
strain response can be calculated with the Boltzmann integral and appears to be characterized
by the storage compliance D′(ω) and the loss complianceD′′(ω). Both compliances are positive
for all ω. Because ε(t = 0) < 0, the definition of D′ includes a minus sign.

σ(t) = σ0 sin(ωt) → σ̇(t) = σ0ω cos(ωt)

ε(t) =

∫ t

τ=−∞

D(t− τ)σ̇(τ) dτ =

∫ t

τ=−∞

D(t− τ)σ0ω cos(ωτ) dτ

= σ0

[

ω

∫

∞

s=0
D(s) sin(ωs) ds

]

sin(ωt) + σ0

[

ω

∫

∞

s=0
D(s) cos(ωs) ds

]

cos(ωt)

= σ0D
′ sin(ωt) − σ0D

′′ cos(ωt)

D′(ω) = ω

∫

∞

s=0
D(s) sin(ωs) ds : storage compliance

D′′(ω) = −ω

∫

∞

s=0
D(s) cos(ωs) ds : loss compliance

6.16 Relation between D′, D′′ and δ

Writing the strain response with two different relations, results in relations between D′, D′′

and δ. The amplitude ε0 of the strain response can also be calculated.

ε(t) = ε0 sin(ωt− δ) = ε0 cos(δ) sin(ωt) − ε0 sin(δ) cos(ωt)

ε(t) = σ0D
′ sin(ωt) − σ0D

′′ cos(ωt)

storage and loss compliance

D′ =
ε0
σ0

cos(δ)

D′′ =
ε0
σ0

sin(δ)















→



















D′′

D′
= tan(δ) →

δ = arctan

(

D′′

D′

)

amplitude ε0 = σ0

√

(D′)2 + (D′′)2

6.17 Measured D′ and D′′

Typical measured values for D′(ω), D′′(ω) are shown in the plots below. Again it is obvious
that the loss compliance is zero for both very low and very high frequencies. The storage
compliance is reversely proportional to the frequency.
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Fig. 6.61 : Characteristic values of D′ and D′′

6.18 Relation between (D′, D′′) and (E ′, E ′′)

There is a relation between storage and loss modulus on the one hand and storage and loss
compliance on the other. Remember that there is not such a relation between the relaxation
function and the creep function.

σ0 = ε0
√

(E′)2 + (E′′)2

ε0 = σ0

√

(D′)2 + (D′′)2







→ [(E′)2 + (E′′)2][(D′)2 + (D′′)2] = 1 (1)

D′′

D′
=
E′′

E′
→ D′′ = D′

E′′

E′
(2)

(1) & (2) → D′ =
E′

(E′)2 + (E′′)2
; D′′ =

E′′

(E′)2 + (E′′)2

idem E′ =
D′

(D′)2 + (D′′)2
; E′′ =

D′′

(D′)2 + (D′′)2

6.19 Complex variables

In literature on viscoelastic behavior and modeling, complex variables are often used. They
can be derived easily by writing the strain excitation and the stress response as the real part
of a complex number, where Euler’s formula eiαx = cos(αx) + i sin(αx) is used.

ε(t) = ε0 sin(ωt) = ε0 cos(ωt− π
2 ) = Re

[

ε0e
−i

π
2 eiωt

]

= Re
[

ε∗eiωt
]

σ(t) = σ0 sin(ωt+ δ) = σ0 cos(ωt− π
2 + δ) = Re

[

σ0e
i(δ−

π
2 )eiωt

]

= Re
[

σ∗eiωt
]



complex modulus and compliance

E∗ =
σ∗

ε∗
=
σ0

ε0
eiδ =

σ0

ε0
cos(δ) + i

σ0

ε0
sin(δ) = E′ + iE′′

D∗ =
ε∗

σ∗
=
ε0
σ0
e−iδ =

ε0
σ0

cos(δ) − i
ε0
σ0

sin(δ) = D′ − iD′′

dynamic modulus en compliance

Ed = |E∗| =
√

(E′)2 + (E′′)2 =
σ0

ε0

Dd = |D∗| =
√

(D′)2 + (D′′)2 =
ε0
σ0

6.20 Viscoelastic models

The response of a viscoelastic material is given by the Boltzmann integral and to calculate
it we need the creep and/or relaxation functions D(t) and E(t). Mathematical expressions
can be chosen for these functions taking into account some general requirements. The chosen
functions can than be fitted onto data from creep and relaxation tests. Instead of choosing
rather arbitrary functions, they are generally derived from the behavior of one-dimensional
mechanical spring-dashpot systems. Simple systems like the Maxwell, Kelvin-Voigt and Stan-
dard Solid element, are not always useful, because the lack of parameters prohibits a good fit
of experimental data. In practice Generalized Maxwell or Generalized Kelvin-Voigt models
are used.

Because creep and relaxation tests may need a long experimental time period and accu-
racy is not high, harmonic excitation tests are carried out to determine D′(ω), D′′(ω), E′(ω)
and E′′(ω). These parameters can be converted to D(t) and E(t). These experiments are
generally known as D(ynamic) M(echanical) A(nalysis) or D(ynamic) M(echanical) T(hermal)
A(nalysis), because time-temperature superposition is mostly used.

In the following we will study some mechanical models. Their behavior is described by
a differential equation. Solving this for stress or strain excitations results in the viscoelastic
material functions.

Maxwell
ε

E η

σ

Kelvin-Voigt
ε

E

η

σ

Standard Solid
E

E∞

σ
η

εv εe



Generalized Maxwell

E1 E2

η1 η2

E∞

Fig. 6.62 : Discrete mechanical models for viscoelastic material behavior

6.21 Maxwell model

One of the simplest models to describe linear viscoelastic material behavior is the Maxwell
model. It consists of a spring (modulus E) and a dashpot (viscosity η) in series.

The stress and strain in/of the Maxwell element is related by a first-order differential
equation. For both stress and strain excitation, the differential equation can be solved, using
appropriate initial conditions. General solutions – integrals for stress and strain – can be
derived.

ε

E η

σ

Fig. 6.63 : Maxwell model

ε = εE + εη → ε̇ = ε̇E + ε̇η =
σ̇

E
+
σ

η

6.22 Maxwell : step excitations

For step excitations of stress and strain the differential equation of the Maxwell model can
be solved. The response represents the creep and relaxation functions, respectively.

σ(t) = σ0H(t, 0) → σ̇(t) = σ0δ(t, 0)

ε̇(t) =
σ0

E
δ(t, 0) +

σ0

η

ε(t) =
σ0

E
H(t, 0) +

σ0

η
t = σ0

[

1

η

(

t+
η

E

)

]

= σ0D(t)
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Fig. 6.64 : Creep for a Maxwell model

ε(t) = ε0H(t, 0) → ε̇(t) = ε0δ(t, 0)

σ(t) = ε0E e
−

E
η t

= ε0E e
−

t
τm = ε0E(t)

t

ε

ε0
Eε0

τm
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Fig. 6.65 : Relaxation for a Maxwell model

6.23 Maxwell : Boltzmann integrals

For a general stress and strain excitation the differential equation of the Maxwell model
can also be solved. These general solutions are Boltzmann integrals, which can be used to
calculate strain/stress responses to stress/strain excitations.

The creep and relaxation functions of the Maxwell model are readily recognized in the
integrals. Response to step excitations reveals that the Maxwell model describes viscoelastic
fluid behavior, characterized by a time constant τ = η

E [s].

ε(t) =
1

η

∫ t

τ=−∞

{

(t− τ) +
η

E

}

σ̇(τ) dτ =

∫ t

τ=−∞

D(t− τ)σ̇(τ) dτ

σ(t) =

∫ t

τ=−∞

{

Ee
−

E
η (t−τ)

}

ε̇(τ) dτ =

∫ t

τ=−∞

E(t− τ)ε̇(τ) dτ



6.24 Maxwell : harmonic stress excitation

The strain response of the Maxwell model to an harmonic stress excitation is readily calculated
from the differential equation. Storage and loss compliances are thus determined.

σ(t) = σ0 sin(ωt) → σ̇(t) = σ0ω cos(ωt)

strain response

ε̇(t) = =
1

E
σ0ω cos(ωt) +

1

η
σ0 sin(ωt)

ε(t) = σ0

[

1

E

]

sin(ωt) − σ0

[

1

ηω

]

cos(ωt)

= εP (t) εH damps out

= σ0D
′ sin(ωt) − σ0D

′′ cos(ωt)

dynamic quantities

D′ =
1

E
; D′′ =

1

ηω
; δ = arctan

(

D′′

D′

)

= arctan

(

E

ηω

)

6.25 Maxwell : harmonic strain excitation

With the Boltzmann integral for the Maxwell model, the stress response to an harmonic
strain excitation can be calculated. Storage and loss moduli are obtained as a function of ω.
Comparing these functions with measured values reveals that the Maxwell model is generally
not adequate to describe viscoelastic behavior of real materials.

ε(t) = ε0 sin(ωt) → ε̇(t) = ε0ω cos(ωt)

stress response

σ(t) =

∫ t

τ=−∞

E(t− τ)ε̇(τ) dτ

= Eε0ωe
−

E
η t

∫ t

τ=0
e

E
η τ

cos(ωτ) dτ

=

[

Eε0ω

(E
η )2 + ω2

E

η

]

e
−

E
η t

+

[

Eε0ω

(E
η )2 + ω2

ω

]

sin(ωt) +

[

Eε0ω

(E
η )2 + ω2

E

η

]

cos(ωt)

= ε0

[

Eω

(E
η )2 + ω2

ω

]

sin(ωt) + ε0

[

Eω

(E
η )2 + ω2

E

η

]

cos(ωt) for t ≥ 0

= ε0

[

Eω2τ2
m

1 + ω2τ2
m

]

sin(ωt) + ε0

[

Eωτm
1 + ω2τ2

m

]

cos(ωt)

= ε0E
′ sin(ωt) + ε0E

′′ cos(ωt)

dynamic quantities

E′ =
Eω2

(E
η )2 + ω2

; E′′ =
Eω(E

η )

(E
η )2 + ω2

; tan(δ) =
E′′

E′
=

1

ωτm



6.26 Kelvin-Voigt model

The Kelvin-Voigt model is a simple model for the description of linear viscoelastic material
behavior. It consists of a spring (modulus E) parallel to a dashpot (viscosity η).

The stress and strain in/of the Kelvin-Voigt element is related by a first-order differential
equation. For strain excitation, this equation directly describes the stress response. For stress
excitation, a general integral solution of the differential equation can be derived.

ε

E

η

σ

Fig. 6.66 : Kelvin model

σ = σE + ση = Eε+ ηε̇

6.27 Kelvin-Voigt : step excitations

Strain response to a step excitation of stress reveals that the Kelvin-Voigt model describes
viscoelastic solid behavior, characterized by the time constant τ = η

E [s]. A stepwise strain
excitation leads to infinite stress.

σ(t) = σ0H(t, 0) → σ̇(t) = σ0δ(t, 0)

ηε̇(t) + Eε(t) = σ(t) = σ0H(t, 0)

ε(t) = εH(t) + εP = C e
−

E
η t

+
σ0

E
ε(t = 0) = 0







→ C = − σ0

E

ε(t) =
σ0

E

[

1 − e
−

E
η t

]

= σ0D(t)

t

σ

σ0

1
Eσ0

t
τk

ε

Fig. 6.67 : Creep of a Kelvin model



ε(t) = ε0H(t, 0) → ε̇(t) = ε0δ(t, 0)

σ(t) = Eε(t) + ηε̇(t)

σ(t) = Eε0 + ηε0δ(t, 0) = ε0 [E + ηδ(t, 0)] = ∞

6.28 Kelvin-Voigt : Boltzmann integral

The general solution for the strain response to a stress excitation is given by a Boltzmann
integral, in which we recognize the creep function of the Kelvin-Voigt element. For a general
strain excitation the stress response can be calculated directly from the Kelvin-Voigt element
equation.

ε(t) =
1

E

∫ t

τ=−∞

{

1 − e
−

E
η (t−τ)

}

σ̇(τ) dτ =

∫ t

τ=−∞

D(t− τ)σ̇(τ) dτ

6.29 Kelvin-Voigt : harmonic stress excitation

For the Kelvin-Voigt model, the storage and loss compliance can be calculated. The Boltz-
mann integral with the Kelvin-Voigt creep function is used to calculate the strain response
for an harmonic stress excitation.

σ(t) = σ0 sin(ωt) → σ̇(t) = σ0ω cos(ωt)

strain response

ε(t) =

∫ t

τ=0
D(t− τ)σ̇(τ) dτ

= σ0







1
(

E
η

)2
+ ω2

E

η2






sin(ωt) − σ0







ω
(

E
η

)2
+ ω2

1

η






cos(ωt)

= σ0

[

1

E(1 + ω2τ2
k )

]

sin(ωt) − σ0

[

ωτk
E(1 + ω2τ2

k )

]

cos(ωt)

= σ0D
′ sin(ωt) − σ0D

′′ cos(ωt)

dynamic quantities

D′(ω) =
1

(

E
η

)2
+ ω2

E

η2
=

1

E(1 + ω2τ2
k )

D′′(ω) =
ω

(

E
η

)2
+ ω2

1

η
=

ωτ

E(1 + ω2τ2
k )

tan(δ) =
D′′

D′
= ωτk → δ = arctan

(ηω

E

)



6.30 Standard Solid model

The Standard Solid model consists of a parallel arrangement of a Maxwell element (modulus
E, viscosity η) and a linear spring (modulus E∞). This model incorporates the Maxwell
model (E∞ = 0) and the Kelvin-Voigt model (E = 0). The stress-strain relation is described
by a differential equation, which can be solved resulting in Boltzmann integrals for strain and
stress.

E

E∞

σ
η

εv εe

Fig. 6.68 : Standard Solid model

constitutive relations

• σ = σ∞ + σve

• ε̇ = ε̇v + ε̇e

• ε̇v =
1

η
σve

• σve = Eεe → ε̇e =
1

E
σ̇ve

• ε =
1

E∞

σ∞

constitutive equation

σ = σ∞ + σve = E∞ε+ ηε̇v

= E∞ε+ η(ε̇− ε̇e) = E∞ε+ ηε̇− η
σ̇ve

E

= E∞ε+ ηε̇− η

E
(σ̇ − E∞ε̇) →

σ +
η

E
σ̇ = E∞ε+

η(E + E∞)

E
ε̇

6.31 Standard Solid : step excitations

Solutions for the differential equation when applying a step in the stress or a step in the
strain can be derived. The time constant for creep is defined as τc = η

E + η
E∞

and the time
constant for relaxation as τr = η

E . They represent the intersection point of the tangent to
the creep/relaxation curve at t = 0 and the asymptote for strain ( σ0

E∞

) and stress (ε0 E∞),
respectively.
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Fig. 6.69 : Creep and relaxation of a Standard Solid model

6.32 Standard Solid : Boltzmann integrals

In the Boltzmann integrals for strain and stress, the creep and relaxation functions of the
Standard Solid element are readily recognized.

ε(t) =

∫ t

τ=−∞

{

1

E∞

− E

E∞(E∞ + E)
e
−

E∞E
η(E∞+E) (t−τ)

}

σ̇(τ) dτ

=

∫ t

τ=−∞

D(t− τ)σ̇(τ) dτ

σ(t) =

∫ t

τ=−∞

{

E∞ + Ee
−

E
η (t−τ)

}

ε̇(τ) dτ

=

∫ t

τ=−∞

E(t− τ)ε̇(τ) dτ

6.33 Generalized Maxwell model

Both the Maxwell and the Kelvin-Voigt models are too simple to describe the viscoelastic
behavior of real materials. Combining a number of Maxwell elements in a parallel configura-
tion, leads to the generalized Maxwell model, which mostly also has an extra parallel spring
for the correct description of long-term behavior of viscoelastic solid materials. Such a model
is generally used for experimental characterization of the behavior of linear viscoelastic ma-
terials in a Dynamic Mechanical (Thermal) Analysis (DM(T)A) test.



The creep function E(t) is easily determined and has a number of time constants to
characterize the viscoelastic material response. A model like the generalized Maxwell model
is therefore also referred to as multi mode.

E1 E2

η1 η2

E∞

Fig. 6.70 : Generalized Maxwell model

E(t) = E∞ +
∑

i

Eie
−

t
τi ; τi =

ηi

Ei

equilibrium modulus E∞ = lim
t→∞

E(t)

glass modulus Eg = lim
t→0

E(t) = E∞ +
∑

i

Ei

6.34 Generalized Kelvin model

The generalized Kelvin model consists of a number of Kelvin-Voigt elements arranged in
series. An extra spring – sometimes a dashpot – is also provided.

Eg

E1 E2

η2η1

Fig. 6.71 : Generalized Kelvin model

D(t) =
1

Eg
+

∑

i

1

Ei
(1 − e

−
t
τi ) ; τi =

ηi

Ei

= Dg +
∑

i

Di(1 − e
−

t
τi )



glass compliance Dg =
1

Eg
= lim

t→0
D(t)

equilibrium compliance D∞ = lim
t→∞

D(t) = Dg +
∑

i

Di

6.35 Stress update

The current stress is given by a Boltzmann integral over the strain history.

Using a Generalized Maxwell model to specify the relaxation function E(t), an expression
for σ(t) can be derived.

σ(t) =

t
∫

τ=0

E(t− τ)ε̇(τ) dτ

E(t) = E∞ +

N
∑

i=1

Eie
−

t
τi



























→

σ(t) =

t
∫

τ=0

[

E∞ +

N
∑

i=1

Eie
−

t−τ
τi

]

ε̇(τ) dτ = E∞ε(t) +

N
∑

i=1

t
∫

τ=0

Eie
−

t−τ
τi ε̇(τ) dτ

= E∞ε(t) +
N

∑

i=1

σi(t)

6.36 Time discretization

In the numerical analysis of the time dependent behavior, the total time interval [0, t] is
discretized :

[0, t] → [t1 = 0, t2, t3, .., tn, tn+1 = t]

The timespan between two discrete moments in the time interval is a time increment. It is
assumed that these increments are of equal length :

∆t = tj+1 − tj ; j = 1, ..., n

The Boltzmann integral is now split in an integral over [0, tn] and an integral over the last or
current increment [tn, tn+1 = t].

σ(t) = E∞ε(t) +

N
∑

i=1

σi(t) = E∞ε(t) +

N
∑

i=1

t
∫

τ=0

Eie
−

t−τ
τi ε̇(τ) dτ

= E∞ε(t) +
N

∑

i=1



e
−

∆t
τi

tn
∫

τ=0

Eie
−

tn−τ
τi ε̇(τ) dτ + Ei

t
∫

τ=tn

e
−

t−τ
τi ε̇(τ) dτ







6.37 Linear incremental strain

For further evaluation of σ(t) it is assumed that the strain is a linear function of time in each
time increment. For the current increment we have :

ε(τ) = ε(tn) + (τ − tn)
∆ε

∆t
→ ε̇(τ) =

∆ε

∆t

The integral over the current increment can now be evaluated very easily.

t
∫

τ=tn

e
−

t−τ
τi ε̇(τ) dτ =

∆ε

∆t

t
∫

τ=tn

e
−

t−τ
τi dτ =

∆ε

∆t
τi

(

1 − e
−

∆t
τi

)

6.38 Stress

Calculating the current stress does not mean that the Boltzmann integral has to be evaluated
over the total deformation history. When results are stored properly we can easily update
the stress σ(t).

σ(t) = E∞ε(t) +

N
∑

i=1

σi(t)

= E∞ε(t) +

N
∑

i=1



e
−

∆t
τi

tn
∫

τ=0

Eie
−

tn−τ
τi ε̇(τ) dτ + Eiτi

(

1 − e
−

∆t
τi

)

∆ε

∆t

]

σ(t) = E∞ε(t) +

N
∑

i=1

[

e
−

∆t
τi σi(tn) + Eipi∆ε

]

with pi =
τi
∆t

(

1 − e
−

∆t
τi

)

6.39 Stiffness

The current stiffness of the material is the derivative of the stress with respect to the stretch
ratio. Because the linear strain is used here, the derivative w.r.t. strain has the same value.

σ(t) = E∞ε(t) +
N

∑

i=1

[

e
−

∆t
τi σi(tn) + Eipi∆ε

]

→

∂σ

∂λ
= Cλ = Cε = E∞ +

N
∑

i=1

Eipi



6.40 Implementation

See tr2dviel.m for the implementation.

6.41 Viscoelastic : differential formulation

The differential equation for a viscoelastic material model can be solved numerically. This is
illustrated for the Standard Solid model.

constitutive equation

σ +
η

E
σ̇ = E∞ε+

η(E +E∞)

E
ε̇

σ +Aσ̇ = Bε+ Cε̇

stress update, implicit backward Euler

∆tσ +A∆σ = ∆tBε+ C∆ε

(∆t+A)σ = Aσn +∆tB ε+ C∆ε

σ =
1

∆t+A
[Aσn +∆tB ε+C ∆ε]

6.42 Examples

A truss with length 100 mm and cross-sectional area 10 mm2 is loaded with a time dependent
axial strain. The stress is calculated as a function of time.

6.43 Strain step

A strain step with an amplitude of 0.1 is applied and the stress response is calculated for the
Maxwell and the Standard-Solid models. Rather fictitious values for the material parameters
are chosen. The initial stress can be verified, using the strain amplitude and the initial
stiffness. The final stress value can be verified, using the strain amplitude and the equilibrium
modulus.

Maxwell E∞ = 0 E1 = 1 τ1 = 0.01
Standard-Solid E∞ = 1 E1 = 1 τ1 = 0.01
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Fig. 6.72 : Stress response for Maxwell and Standard-Solid model

6.44 Linear viscoelastic models

When stress or strain is prescribed as a function of time, the strain or stress can be calculated.
The examples show stress responses for a prescribed strain excitation, being a strain step
(ε0 = 0.01) followed by a constant strain rate (ε̇ = 0.1 [s−1]).

The stress response is calculated, using a Maxwell, a Kelvin-Voigt, a Standard-Solid and
a 2-mode model. Parameter values are listed in the table below.

E∞ E1 τ1 E2 τ2 ν

Maxwell 0 100 0.1 0 0 0
Kelvin-Voigt 100 1010 10−12 0 0 0
Standard-Solid 100 100 0.1 0 0 0
2-mode 100 100 0.1 100 0.1 0
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Fig. 6.73 : Prescribed strain and stress response for Maxwell model
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Fig. 6.74 : Stress response for Standard-Solid and 2-mode model

6.45 Multi-mode model response

An axial strain step with amplitude 0.01 is prescribed on an tensile bar with initial cross-
sectional area A0 = 10 mm2. The stress response is calculated for a 12-mode generalized
Maxwell model. The modal parameters are listed in the table below.

E [MPa] τ [s] E [MPa] τ [s]

1 3.0e6 3.1e-8 2 1.4e6 3.0e-7
3 3.9e6 3.0e-6 4 5.4e6 2.9e-5
5 1.3e6 2.8e-4 6 2.3e5 2.7e-3
7 7.6e4 2.6e-2 8 3.7e4 2.5e-1
9 3.3e4 2.5e+0 10 1.7e4 2.4e+1
11 8.0e3 2.3e+2 12 1.2e4 2.2e+3
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Fig. 6.75 : Tensile stress versus time



7 Creep behavior

The phenomenon called creep is the deformation under constant load. Viscoelastic material
shows this behavior. The term creep however is especially reserved for deformation at tem-
peratures, which are considered to be high with respect to the melting temperature Tm of
the material, e.g. T > 0.2Tm. Such high temperatures are encountered in eg. (jet) engines
and heat exchangers. Some materials with a low melting point, like lead (Pb), show creep at
room temperature.

During the so-called stage I or primary creep, the strain rate decreases as a function
of time. The strain rate is constant for stage II or secondary creep, also called steady state
creep. Stage III or tertiary creep shows an increased strain rate and eventually leads to creep
fracture or rupture.

IIIII

ε

t

I

Fig. 7.76 : Creep strain as a function of time at constant stress

The creep behavior is influenced strongly by both stress and temperature, as is illustrated in
the figure below. Obviously therefore, creep behavior is described by relating the creep strain
rate ε̇c to stress, temperature and time. The temperature dependency could be included by
making material parameters a function of temperature. It is more convenient, however, to
implement the temperature dependency explicitly in the creep model. Much used are so-called
power law models.

T
σ

t

ε

Fig. 7.77 : The influence of stress and temperature on the creep strain rate



general model ε̇c = Afσ(σ)fε(εc)fT (T )ft(t)

power law model ε̇c = Aσmεnc T
p
(

qtq−1
)

7.1 Primary creep

Primary creep – also referred to as stage I, transient creep or delayed elastic effect – is
observed at T < 0.4Tm. Mechanisms, which are associated with this behavior are dislocation
coalescence and dislocation entanglement, leading to slip steps (jogs). Dislocations may pile-
up at grain boundaries and impurities. All this leads to macroscopic hardening. When
temperature is higher, 0.4Tm < T < 0.5Tm, the thermal activity of dislocations is higher and
a transition to secondary creep is seen.

7.2 Secondary creep

Secondary creep – also referred to as stage II, steady-state creep or viscous flow – is observed
at 0.5Tm < T < 0.6Tm. The hardening, which is apparent in primary creep is balanced by
recovery, leading to thermal softening. The thermal energy leads to vacancy movement (self
diffusion) and this causes dislocation movement (climb). The moving dislocations can anni-
hilate, align and/or pass obstacles. More drastic recovery may be caused by recrystallization,
which can occur when internal stresses exist.

The temperature dependency is generally included with an Arrhenius function exp(Qc/RT ),
where Qc is the creep actuation energy and R is Boltzmann’s constant. The available evidence
indicates that stage II creep is diffusion controlled, and so in the models the activation energy
for creep, Qc, can often be replaced by the activation energy for selfdiffusion Qsd.

Most models for stage II creep are based on the five-power-law creep law. For temper-
atures below 0.5-0.6 Tm a transition toward primary creep is observed, which in reference
to the modeling is called power-law-breakdown. Sometimes a threshold stress is introduced
below which no creep can be measured.

7.3 Tertiary creep

Tertiary creep – also referred to as stage III or accelerating creep – is observed at 0.6Tm <
T < 0.8Tm and is associated with geometric instabilities and damage.

One mechanism is grain boundary sliding and subsequent void initiation and coalescence,
leading to inter granular cracks. Another mechanism is diffusional flow, which occurs mainly
at higher temperatures and lower stresses. Two possibilities are : 1) diffusion through grains
(Nabarro-Herring creep) with slow vacancy jump frequencies along many paths, and 2) diffu-
sion along grain boundaries
(Coble creep) with high vacancy jump frequencies along a few paths.

Stage III creep is often modeled with continuum damage mechanics, where a damage



variable is used to model internal damage, which influences the creep strain rate. An evolution
equation is required to control the damage growth as a function of stress and/or strain.

7.4 Stress functions

Several authors have reported various functions fσ to implement the influence of the stress.

Norton; Bailey (1929) ε̇c = Kσn

Hooke-Norton ε̇c =
σ̇

E
+Kσn

Johnson et.al. (1963) ε̇c = D1σ
n1 +D2σ

n2

Dorn (1955) ε̇c = B exp(βσ)

Soderberg (1936) ε̇c = B

[

exp

(

σ

σ0

)

− 1

]

Prandtl (1928) ε̇c = A sinh

(

σ

σ0

)

Garofalo (1965) ε̇c = A

[

sinh

(

σ

σ0

)]n

Lemaitre, Chaboche (1985) ε̇c =

(

σ

λ0

)N0

exp
(

ασN0+1
)

7.5 Temperature functions

Several authors have reported various functions fT to implement the influence of the temper-
ature. These creep models also take into account the dependency of stress and (sometimes)
time.

Kauzmann (1941) ε̇c = A exp

(

− ∆H − γσ

RT

)

Lifszic (1963) ε̇c =
σ

T
exp

(

− ∆H

RT

)

Dorn, Tietz (1949/55) εc = f

(

t exp

[

− ∆H

RT

])

fσ(σ)

Penny, Marriott (1971) εc =

(

t exp

[

− ∆H

RT

])n

fσ(σ)

Boyle, Spence (1983) εc = C exp

(

− ∆H

RT

)

tmσn



7.6 Time functions

Several authors have reported various functions ft to implement the influence of the time.

Andrade (1910) εc = ln

(

1 + βt
1
3

)

+ kt

Andrade (small ε) εc = βt
1
3 + kt ≈ βt

1
3

Bailey (1935) εc = Ftn

Graham, Walles (1955) εc =
M
∑

j=1

ajt
mj

McVetty (1934) εc = G (1 − exp(−qt)) +Ht

Findley et.al. (1944) εc = ε1 + ε2t
n (n < 1)

Pugh (1975) εc =
a1t

1 + b1t
+

a2t

1 + b2t
+ ε̇mt

Garofalo εc = εt(1 − e−rt) + ε̇s t

7.7 Creep model

The discrete mechanical model for creep is a Maxwell element with a non-linear dashpot.
The viscous or creep strain rate may be a function of stress σ, total creep strain εc, absolute
temperature T and time t.

εc εe

Eη
σ

Fig. 7.78 : Creep model

constitutive relations

• ε̇ = ε̇e + ε̇c

• σ = Eεe → ε̇e =
1

E
σ̇

• ε̇c = Afσ(σ) fεc(εc) fT (T ) ft(t) = f(σ, εc, T, t)

constitutive equation



σ̇ = Eε̇e = Eε̇− Eε̇c = Eε̇− Ef(σ, εc, T, t)

7.8 Stress update

The constitutive equation, can be solved explicitly or implicitly. For the latter case, a Newton
iteration procedure must be implemented to calculate the stress.

σ̇ = Eε̇− Ef(σ, εc, T, t)

∆σ = E∆ε−∆tEf(σ, εc, T, t)

σ − σn = E(ε − εn) −∆tEf(σ, εc, T, t)

7.9 Implicit stress update

In the implicit procedure the end-increment stress is determined iteratively.

σ − σn = E(ε− εn) −∆tEf(σ, εc, T, t)

σ∗ + δσ − σn = E(ε− εn) −∆tE(f∗ + δf) = E(ε− εn) −∆tEf∗ −∆tEδf

= E(ε− εn) −∆tEf∗ −∆tE
∂f

∂σ
δσ →

[

1 +∆tE
∂f

∂σ

]

δσ = −σ∗ + σn + E(ε − εn) −∆tEf∗

7.10 Explicit stress update

In the explicit procedure the end-increment stress is determined directly.

σ = σn + E(ε− εn) −∆tEf(σn, εcn , Tn, tn)

7.11 Stiffness

The material stiffness Cε is the ratio of the variation of stress and strain.

implicit

σ − σn −Eε+ Eεn +∆tEf(σ, εc, T, t) = 0

δσ +∆tE
∂f

∂σ

∣

∣

∣

∣

∗

δσ − Eδε = 0

Cε =

(

1 +∆tE
∂f

∂σ

∣

∣

∣

∣

∗
)

−1

E



explicit

σ − σn − Eε+ Eεn +∆tEf(σn, εcn , Tn, tn) = 0

δσ = Eδε → Cε = E

7.12 Implementation

See tr2delvi.m for the implementation.

7.13 Examples

In all examples a truss is subjected to an axial stress or strain.

7.14 Creep versus viscoelasticity

Linear viscoelastic behavior can be modeled with a multi-mode Maxwell model, represented
by a mechanical system, which has a number of parallel Maxwell elements and one parallel
spring. Springs and dashpots are linear.

Creep behavior is modeled with one Maxwell model with a nonlinear dashpot. The
viscosity is a nonlinear function of stress, creep strain, temperature and time.

The Norton model for secondary creep can be made equivalent to the linear Maxwell
model.

Maxwell model (E, η)

ε = εe + εc ; E(t) = Eet/τ ; τ =
η

E
; ε̇c =

σ

η
; εe =

σ

E

Norton model (A, m)

ε = εe + εc ; ε̇c = f(σ, εc, T, t)ε̇c = Aσm ; εe =
σ

E

equivalence

Maxwell E = 109 η = 109 τ = 1

Norton E = 109 A = 1
η = 10−9 m = 1
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Fig. 7.79 : Stress response for Maxwell viscoelastic and Norton creep model

7.15 General creep model for SnAg-solder

Evans and Wilshire and later Maruyama and Oikawa proposed a general model, which de-
scribes the primary, secondary and tertiary creep of alloys. Parameters in the model must be
fitted onto experimental data.

The creep strain at time t is described by two terms. The first one describes the hard-
ening or primary creep stage and the second describes the weakening or tertiary creep stage.
Combined, they characterize also the transition region, the secondary creep.

εc(t) = ε0 +A(σ)
[

1 − e−α(σ,T )t
]

+B(σ, T )
[

eα(σ,T )t − 1
]

α(σ, T ) = c1 [sinh(βσ)]n1 e−
Q1

RT

A(σ) = c2σ
n2 ; B(σ, T ) = c3σ

n3e−
Q2

RT

From the general model for the creep strain the creep strain rate ε̇c can be calculated and
subsequently the initial creep rate ε̇c,i, the time tm for the minimum creep rate ε̇c,m to occur
and the strain εc,m at that time.

With the universal gas constant R = 8.314 and stress in MPa andQ in kJ/mol, parameter
values for SnAg-solder are fitted on experimental data and listed in the table below. The
absolute temperature is assumed to be T = 398 [K].

ε̇c = Aαe−αt +Bαeαt ; ε̇c,i = ε̇c(t = 0) = α(A +B) ; tm =
1

2α
ln

(

A

B

)

ε̇c,m = ε̇c(t = tm) = 2α
√
AB ; εc,m = εc(t = tm) = ε0 +A−B



ε0 0

c1 1.73 × 105 n1 4.66
β 0.095 Q1 70

c2 2.06 × 10−3 n2 1.1

c3 9.65 × 10−4 n3 2.38
Q2 17.8
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Fig. 7.80 : Creep strain at constant stress σ = 20 MPa

7.16 Special creep model for SnAg-solder

Several creep models for SnAg-solder have been published in literature. The 2-term model
of Wiese (2005) is one of them and its parameter values have been fitted on experimental
data for Sn4Ag0.5Cu solder material. Parameter values are listed in the table. Temperature
(T ) is in oK and equivalent stress (σ) is in MPa. The absolute temperature is assumed to be
T = 398 [K].

ε̇c = A1σ
m1ee1/T +A2σ

m2ee2/T

E = 59.533 − 66.667T

A1 = 4.10−7 m1 = 3 e1 = −3223

A1 = 1.10−12 m1 = 12 e1 = −7348
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Fig. 7.81 : Relaxation stress for constant strain ε = 0.001



8 Viscoplastic material behavior

In many forming processes the deformation rates are small enough to consider the material
behavior to be independent of strain rate and to use an elastoplastic material model. For
high strain rates this assumption leads to faulty results. In a tensile test the yield stress is
seen to increase with higher strain rates.

σ

ε̇

ε

Fig. 8.82 : Strain rate dependent plastic behavior

Polymers and certain metallurgical alloys show softening behavior immediately after reaching
the yield point. At larger strains the softening is followed by hardening. The complete
stress-strain behavior is strain rate dependent, but the initial yield stress is constant.

ε

σ

ε̇

Fig. 8.83 : Softening and resumed hardening

8.1 Viscoplastic (Perzyna) model

The Perzyna model is a genuine viscoplastic model because it has a yield criterion, expressed
with a yield function f . The model is called an ”over-stress model” because f > 0 may occur.
This is different compared to elastoplastic models, which always require f ≤ 0. The rate of
the viscoplastic multiplier λ, λ̇, cannot be calculated from a consistency equation, but is given
by a separate equation. We will only consider isotropic hardening.

The discrete mechanical model for viscoplastic material behavior consists of a spring



E in series with a parallel arrangement of a hardening spring H, a linear dashpot η and a
friction slider, opening at σ = σy.

σ
E

σy

εeεvp

H

η

Fig. 8.84 : Discrete model for viscoplastic material behavior

• f = σ̄ − σy with f < 0 → elastic
f ≥ 0 → viscoplastic

• σy = σy(σy0, ε̄vp) • σ̄ = |σ|
• ε̇ = ε̇e + ε̇vp

• σ = Eεe → ε̇e =
1

E
σ̇

• ε̇vp = λ̇
∂f

∂σ
= λ̇

σ

σ̄
; ˙̄εvp = |ε̇vp|

• ε̄vp =

∫ t

τ=0

˙̄εvp dτ

• λ̇ = γφ(f) = γ (f/σy0)
N

8.2 Hardening laws

Various hardening laws, which were earlier described in section ??, could be used in the
Perzyna model. The effective viscoplastic strain ε̄vp is the history parameter used in the
isotropic hardening models. Polymer materials may show softening, as is the case with Poly-
carbonate (PC). Parameters must be determined experimentally in a compression test, be-
cause the material softening poses problems of localization (necking) in a tensile test.

σy = σy0 +Hε̄vp + aε̄2vp + bε̄3vp + cε̄4vp + dε̄7vp

8.3 Constitutive equations

From the constitutive relations a set of constitutive equations can be derived. The stress and
the viscoplastic multiplier must be determined by integration of these equations.



{

σ̇ = Eε̇e = E(ε̇− ε̇vp) = E{ε̇− λ̇
(σ

σ̄

)

}
λ̇ = γφ

{

∆σ = E∆ε− E∆λ
(σ

σ̄

)

∆λ = γφ∆t
{

σ − σn = Eε− Eεn − E(λ− λn)
(σ

σ̄

)

λ− λn = γφ∆t

8.4 Stress update

In the viscoplastic Perzyna model the stress and viscoplastic multiplier have to be solved
from a set of differential equations. This equations are nonlinear although the viscosity in the
model is constant.

Numerical analysis of mechanical behavior must be done iteratively, e.g. with a Newton-
Raphson scheme. Following an incremental procedure the total loading time is subdivided
into a discrete number of increments, which we assume to be of equal length ∆t. All rele-
vant variables {σ, ε, εvp, ε̄vp, σy} are assumed to be known at the beginning tn of the current
increment.

8.5 Elastic stress predictor

Because it is not known a priori whether (ongoing) elastoviscoplastic deformation or elastic
unloading will occur in the current increment tn→tn+1, the stress calculation starts from the
assumption that the strain increment is completely elastic. The elastic stress predictor σe is
calculated and subsequently the yield criterion is evaluated with the yield function f .

σe = σn + E(ε− εn)

• f = σ̄e − σyn ≤ 0 → elastic increment

• f = σ̄e − σyn > 0 → elastoviscoplastic increment

8.6 Elastic increment

When the increment is fully elastic, the end-increment stress equals the calculated elastic
stress. As no viscoplastic deformation has occurred during the increment, the effective vis-
coplastic strain and the yield stress remain unchanged.

σ(tn+1) = σe

ε̄vp(tn+1) = ε̄vp(tn) = ε̄vpn

σy(tn+1) = σy(tn) = σyn



8.7 Elastoviscoplastic increment

If the elastic stress predictor indicates that the yield criterion is violated, the increment
is elastoviscoplastic. The end-increment stress has to be determined by integration of the
constitutive equations. Integration of the stress can be carried out following an explicit or an
implicit method.

{

∆σ = E∆ε− E∆λ
(σ

σ̄

)

}
∆λ = γφ∆t

{

σ − σn = Eε− Eεn − E(λ− λn)
(σ

σ̄

)

λ− λn = ∆tγφ

8.8 Implicit stress update

When the increment appears to be elastoviscoplastic, the end-increment stress must be up-
dated from the elastic trial stress. The viscoplastic multiplier λ and the stress σ are determined
such that the constitutive equations are satisfied. Because λ and σ are not independent, an
iterative procedure has to be used.

{

σ − σn = Eε− Eεn − E(λ− λn)
(σ

σ̄

)

λ− λn = ∆tγφ
{

σ∗ + δσ − σn = Eε−Eεn − E(λ∗ + δλ− λn)
{(σ

σ̄

)

∗

+ δ
(σ

σ̄

)}

λ∗ + δλ− λn = ∆tγ(φ∗ + δφ)

linearization and reorganization


































δσ +
[

E
(σ

σ̄

)

∗
]

δλ

= −σ∗ + σn + Eε− Eεn − E(λ∗ − λn)
(σ

σ̄

)

∗

[

−∆tγ ∂φ
∂σ

]

δσ +

[

1 −∆tγ
∂φ

∂λ

]

δλ

= −λ∗ + λn +∆tγφ∗

The variation of the function φ can be expressed in variations of σ and λ, using its definition
and

∂ε̄vp

∂λ =
(

σ
σ̄

)

.

∂φ

∂λ
=
dφ

df

df

dσy

dσy

dε̄vp

dε̄vp

dλ
=
dφ

df
(−1)H

(σ

σ̄

)

∗

= − dφ

df
H

(σ

σ̄

)

∗

∂φ

∂σ
=
dφ

df

df

dσ
=
dφ

df

(σ

σ̄

)

∗

dφ

df
= N

(

f

σy0

)N−1 1

σy0



In each iteration step, the stress, viscoplastic multiplier and other variables are updated.

8.9 Explicit stress update

In the explicit procedure, the end-increment values of λ and σ are determined directly.
{

σ − σn = Eε− Eεn − E(λ− λn)
(σ

σ̄

)

λ− λn = ∆tγφ






σ − σn = Eε− Eεn − E(λ− λn)

(

σn

σ̄n

)

λ− λn = ∆tγφn














σ + E

(

σn

σ̄n

)

λ = σn +Eε− Eεn + Eλn

(

σn

σ̄n

)

λ = λn +∆tγφn

(

σn

σ̄n

)

The total stress increment and other state variables can now be calculated.

8.10 Stiffness

The material stiffness is calculated as the ratio of the stress variation and the strain variation:
Cε = δσ

δε .

implicit

σ − σn = E(ε− εn) − E(λ− λn)
(σ

σ̄

)

λ− λn = ∆tγ φ







δσ = E δε − E δλ
(σ

σ̄

)

− E(λ− λn)

(

1

σ̄

)

δσ

δλ = ∆tγδφ = ∆tγ
∂φ

∂σ
δσ +∆tγ

∂φ

∂λ
δλ











δσ = Eδε − E
(σ

σ̄

) γ∆t∂φ
∂σ

1 − γ∆t∂φ
∂λ

δσ −E(λ− λn)

(

1

σ̄

)

δσ

Cε =
E

{

1 − γ∆t∂φ
∂λ

}

{1 − γ∆t∂φ
∂λ} + E

(

σ
σ̄

)

γ∆t∂φ
∂σ + E(λ− λn) 1

σ̄

{

1 − γ∆t∂φ
∂λ

}

explicit









σ − σn = Eε− Eεn − E(λ− λn)

(

σn

σ̄n

)

λ− λn = ∆tγφn






δσ = Eδε− Eδλ

(

σn

σ̄n

)

δλ = 0

Cε = E

8.11 Implementation

See tr2dperz.m for the implementation.

8.12 Examples

8.13 Tensile test at various strain rates

A truss is loaded axially with a prescribed elongation. In the initial state the length of the
truss is l0 = 100 mm and its cross-sectional area is A0 = 10 mm2. The axial force/elongation
is calculated for various material models. The cross-sectional area will change as a function
of the elongation.

The Perzyna model is used to describe the viscoplastic material behavior. The hardening
model and tabulated data for polycarbonate are used. The strain rate is varied.

Fig. 8.85 : Tensile loading of truss element

σy = σv0 +Hε̄vp + aε̄2vp + bε̄3vp + cε̄4vp + dε̄7vp

E 1800 MPa ν 0.37 -
σy0 37 MPa H -200 MPa
γ 0.001 1/s N 3 -
a 500 MPa b 700 MPa
c 800 MPa d 30000 MPa

ε̇l = { 0.01, 0.1, 1 }
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Fig. 8.86 : Stress-stretch and force-elongation for PC

1 1.1 1.2 1.3 1.4
0

100

200

300

400

500

600

λ

σ 
[M

P
a]

 

 

dGldt = 0.04
dGldt = 0.4
dGldt = 4

1 1.1 1.2 1.3 1.4
0

500

1000

1500

2000

2500

3000

3500

4000

λ

F
 [N

]

 

 

dGldt = 0.04
dGldt = 0.4
dGldt = 4

Fig. 8.87 : Stress-stretch and force-elongation for PC; prescribed elongation
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Fig. 8.88 : Stress-stretch and force-elongation for PC; prescribed force



9 Nonlinear viscoelastic material behavior

A polymeric material can be loaded in compression with a constant logarithmic strain rate.
The true stress - absolute value - reaches a maximum value (B) after which softening occurs
(BC) due to structural evolution. Subsequent hardening (CD) results in an increase of the
stress, with increasing strain - absolute value - due to orientation of molecules.

Until the maximum stress level (B) is reached, the deformation is fully reversible. Ini-
tially the material behavior is linear viscoelastic (OA) but from a certain strain, nonlinear
viscoelastic behavior (AB) is observed. After reaching the maximum stress (B), plastic flow
occurs and therefore this stress is called the yield stress σy.

For a number of polymers, like polycarbonate (PC), polymethylmethacrylate (PMMA),
polystyrene (PS) and polyethenetereftalate (PET), the above typical stress-strain behavior is
observed.

Two time-dependent processes can be observed, one related to the deformation kinetics
(strain rate dependency) and another related to the aging kinetics.

σ

εlnO

A

B

C

D

Fig. 9.89 : Softening and resumed hardening

When the uniaxial compression test for PC is carried out at a higher strain rate, the increase
in stress is equal for each strain value.

This is shown in a graph, where the stress maximum σyma, the stress minimum after
softening σymi and the difference between those two values ∆σy, are plotted against the
logarithm of the true strain rate. The stress maximum is referred to as the upper yield stress,
the stress minimum after softening is called the lower yield stress and the difference is the
yield drop, which is constant for PC.

ε̇

σ

εln

σyma

∆σy

ε̇10−110−5

σ

σymi

Fig. 9.90 : Strain rate dependent stress-strain for PC



The strain rate dependency of PMMA is different from that of PC. The increase of the stress
with higher strain rates is not the same for each strain value. The upper yield stress increases
more than the lower yield stress. The yield drop is a function of the strain rate.
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ε̇10−5 10−1

σ σyma

Fig. 9.91 : Strain rate dependent stress-strain for PMMA

The yield drop appears to be a function of the history of the material. When the specimen is
quenched after processing, there is no yield drop. Softening is observed after a certain time, a
phenomenon which is called aging. The time is characteristic for the polymer in question : 15
minutes for PS, 1 day for PMMA and about 3 weeks for PC. Aging and the resulting softening
characteristic, can be neutralized by mechanical deformation, indicated as rejuvenation.

ageing

εln

σ

Fig. 9.92 : Aging

9.1 Nonlinear viscoelastic model

The complete model for nonlinear viscoelastic behavior is based on the models, which are
used to describe the mechanical behavior at increasing stress level.



9.2 Linear viscoelastic behavior

For small strains the material behavior of polymers is linear viscoelastic and can be described
by a Boltzmann integral with multi-mode Maxwell relaxation function. When more molecular
processes are relevant, the relaxation functions for the separate processes can be added.

E1 E2

η1 η2

E∞

Fig. 9.93 : Generalized Maxwell model for linear viscoelastic behavior

σ(t) =

t
∫

ξ=−∞

E(t− ξ)ε̇(ξ) dξ ; E(x) = E∞ +

N
∑

i=1

Eie
−

x
τi ; τi =

ηi

Ei

εln

σ

Fig. 9.94 : Stress-strain relation in linear viscoelastic range

9.3 Nonlinear viscoelastic behavior

For higher strains, but before yielding, the behavior is nonlinear viscoelastic and the relaxation
function becomes a function of the stress. Fortunately this influence can generally be modeled
by using time-stress superposition and adaptation of time variables using a time-stress shift
factor.

σ(t) =

t
∫

ξ=−∞

E(ψ − ψ′)ε̇(ξ) dξ



ψ =

t
∫

ζ=−∞

dζ

aσ{σ(ζ)} ; ψ′ =

ξ
∫

ζ=−∞

dζ

aσ{σ(ζ)}

E(x) = E∞ +

N
∑

i=1

Eie
−

x
τi(σ) = E∞ +

N
∑

i=1

Eie
−

x
τiaσ(σ) ; aσ =

σ/σ0

sinh (σ/σ0)

εln

σ

Fig. 9.95 : Stress-strain relation in nonlinear viscoelastic range

9.4 Creep

When the yield stress (= maximum stress) is reached, stress-activated plastic flow occurs,
described by a semi-empirical relation for the viscous strain rate. The stress level depends
on the strain rate and the temperature. When the stress is below the initial yield stress, the
viscosity is very high and the material behavior is considered to be linear elastic with stiffness
E. This behavior can be modeled with a Maxwell model with a linear spring (stiffness E)
and a nonlinear dashpot (viscosity η). The total strain is additively decomposed in an elastic
strain εe and a viscous strain εv. The viscous strain rate is given as a function of the equivalent
viscoelastic stress s̄ and temperature T .

εvεe

σ
η(σ)E

Fig. 9.96 : Nonlinear creep model

• ε̇ = ε̇e + ε̇v

• σ = Eεe → ε̇e =
1

E
σ̇

• ε̇v = f(s̄, T ) =
σ

η(s̄, T )
; s̄ = |s|
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εln

Fig. 9.97 : Stress-strain relation for creep range

9.5 Softening

After reaching the initial yield stress the stress decreases asymptotically toward a final value.
Here, this softening is taken into account by decreasing the viscosity η with an internal
(damage) variable D. Initially D = D0 and finally D reaches a saturation value D∞. The
value of D is determined by an evolution equation, which relates Ḋ to the effective viscous
strain rate ˙̄εv, with ˙̄εv = |ε̇v| for the one-dimensional case.

εvεe

σ
η(σ)E

Fig. 9.98 : Model for nonlinear creep

• ε̇ = ε̇e + ε̇v

• σ = Eεe → ε̇e =
1

E
σ̇

• ε̇v =
1

η(s̄, T,D)
σ ; s̄ = |s|

• Ḋ =

(

1 − D

D∞

)

h ˙̄εv ; ˙̄εv = |ε̇v |

σ

εln

Fig. 9.99 : Softening



9.6 Hardening

In a compression test it is observed that the softening is followed by hardening. This can be
modeled by decomposing the stress additively. In the discrete mechanical element a linear
spring (stiffness H) is placed parallel to the Maxwell element with linear spring (stiffness E)
and nonlinear dashpot (viscosity η).

The total axial stress σ is the sum of the viscoelastic stress s and the hardening stress
w. The viscoelastic stress is related to the stiffness E, but also to the viscosity η.

s

w

η(s)E

H
σ

εe εv

Fig. 9.100 : Model for nonlinear viscoelastic behavior

• ε̇ = ε̇e + ε̇v

• σ = s+ w = Eεe +Hε

• ε̇v =
1

η(s̄, T,D)
s ; s̄ = |s|

• Ḋ =

(

1 − D

D∞

)

h ˙̄εv ; ˙̄εv = |ε̇v |

σ

σ = s+ w

w

s

εln

Fig. 9.101 : Stress-strain curve for nonlinear viscoelastic behavior



9.7 Aging and hardening

A different model to describe aging and softening is based on additive decomposition of the
stress, where the total stress σ is the sum of the flow stress s, the hardening stress w and
the aging stress ∆σy, which is determined by an aging characteristic function S(t, ε̄v). This
function is taken to be the product of a time-dependent function Sa(t), which describes the
aging kinetics and a softening function Rγ(ε̄v) which describes the softening kinetics. The
viscosity is now a function of this function S(t, ε̄v).

σ

εln

σy

w

s

∆σy

Fig. 9.102 : Aging and hardening

• ε̇ = ε̇e + ε̇v

• σ = s+∆σy + w = Eεe +∆σy +Hε

• ε̇v =
1

η(s̄, T, S)
s ; s̄ = |s|

• S(t, ε̄v) = Sa(t)Rγ(ε̄v)

• Rγ(ε̄v) =
[{

1 +
(

r0e
ε̄v

)r1
}

/ {1 + rr1

0 }
]

r2−1
r1 ; 0 < R < 1

• Sα(t) = Sa(teff ) = c0 + c1 ln

[

teff + ta
t0

]

• teff (T, s̄) =

∫ t

ξ=0

dξ

αT (T (ξ))ασ(s̄(ξ))

• ta = exp

(

Sα(0) − c0
c1

)

• ∆σy = σy(t) − σy0 =
c

c1
{Sα(t) − c0}

9.8 Viscosity

For each material the proper relation for the viscosity has to be chosen. For polymers the
Eyring viscosity function is used.



η = A0
s̄√

3 sinh
(

s̄/(
√

3τ0)
) exp

[

∆H

RT
+
µp

τ0
−D

]

s̄ = |s| ; p = −1
3s ; τ0 =

RT

V

For metals the Bodner-Partom viscosity function is used.

η =
s̄√

12Γ0
exp

[

1
2

(

Z

s̄

)2n
]

Z = Z1 + (Z0 − Z1) exp [−mε̄p]

9.9 Nonlinear viscoelastic model

The nonlinear viscoelastic material behavior is described by some relations, which can be
combined. The resulting constitutive equations must be solved simultaneously.
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εe εv

Fig. 9.103 : Model for nonlinear viscoelastic behavior

• ε̇ = ε̇e + ε̇v

• σ = s+ w = Eεe +Hε

• ε̇v =
1

η(s̄, T,D)
s ; s̄ = |s|

• Ḋ =

(

1 − D

D∞

)

h ˙̄εv ; ˙̄εv = |ε̇v|
constitutive equations

ε̇e = ε̇− ε̇v = ε̇− 1

η(s̄, T,D)
s = ε̇− E

η(s̄, T,D)
εe

σ = s+ w = Eεe +Hε

Ḋ =

(

1 − D

D∞

)

h ˙̄εv
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



9.10 Stress update

The stress is related to the strain rate by a differential equation, which has to be solved
together with the damage evolution equation. After updating εe the stress is calculated
directly. In the following we use ζ = 1

η . An implicit or explicit procedure can be used to
determine the elastic strain and the damage parameter.











ε̇e = ε̇− Eζ(s̄, T,D)εe

Ḋ =

(

1 − D

D∞

)

h ˙̄εv











∆εe = ∆ε−∆tEζ(s̄, T,D)εe

∆D =

(

1 − D

D∞

)

h∆ε̄v

9.11 Implicit stress update

In the implicit update procedure the elastic strain εe and the damage parameterD are updated
iteratively.







εe − εen = ε− εn −∆tEζ(s̄, T,D)εe

D −Dn =

(

1 − D

D∞

)

h∆ε̄v






ε∗e + δεe − εen = ε− εn −∆tEζ(s̄, T,D∗ + δD)(ε∗e + δεe)

D∗ + δD −Dn =

(

1 − D∗ + δD

D∞

)

h∆ε̄v



































δεe +∆tEζ(s̄, T,D∗)δεe +∆tE
∂ζ

∂D
δDε∗e

= −ε∗e + εen + ε− εn −∆tEζ(s̄, T,D∗)ε∗e
[

1 +
h∆ε̄v
D∞

]

δD

= −D∗ +Dn +

(

1 − D∗

D∞

)

h∆ε̄v

9.12 Explicit stress update

In the explicit update procedure the elastic strain εe and the damage parameter D are deter-
mined directly.







εe − εen = ε− εn −∆tEζ(s̄n, T,Dn)εen

D −Dn =

(

1 − Dn

D∞

)

h∆ε̄v






εe = ε− εn + {1 −∆tEζ(s̄n, T,Dn)} εen
D = Dn +

(

1 − Dn

D∞

)

h∆ε̄v



9.13 Stiffness

The material stiffness is calculated as Cε = δσ
δε .

implicit















σ = s+ w = Eεe +Hε
εe − εen = ε− εn −∆tEζ(s̄, T,D)εe

D −Dn =

(

1 − D

D∞

)

h∆ε̄v


















δσ = Eδεe +Hδε

δεe = δε −∆tE
∂ζ

∂D
δDεe −∆tEζ(s̄, T,D)δεe

δD = − δD

D∞

h∆ε̄v → δD = 0







δσ = Eδεe +Hδε
δεe = δε −∆tEζ(s̄, T,D)δεe
δD = 0

Cε =
E +H{1 +∆tEζ(s̄, T,D)}

1 +∆tEζ(s̄, T,D)

explicit















σ = s+ w = Eεe +Hε
εe − εen = ε− εn −∆tEζ(s̄n, T,Dn)εe

D = Dn +

(

1 − Dn

D∞

)

h∆ε̄v






δσ = Eδεe +Hδε
δεe = δε −∆tEζ(s̄n, T,Dn)δεe
δD = 0

δσ =
E

1 +∆tEζ(s̄n, T,Dn)
δε+Hδε

Cε =
E +H{1 +∆tEζ(s̄n, T,Dn)}

1 +∆tEζ(s̄n, T,Dn)

9.14 Implementation

See tr2degp1.m for the implementation.

9.15 Examples

Polymer materials are characterized by an Eyring viscosity. Parameters for various materi-
als are experimentally determined and listed in the table. For the values in the table the
temperature is chosen to be T = 285 K. The universal gas constant is R = 8.314 J/(mol.K).



PET PC PS PP

E 2400 2305 3300 1092 MPa
ν 0.35 0.37 0.37 0.4 -
H 15 29 13 3 MPa
h 13 270 100 0 -
D∞ 11 19 14 - -
A0 3.8568E-27 9.7573E-27 4.2619E-34 2.0319E-29 s
∆H 2.617E+05 2.9E+05 2.6E+5 2.2E+5 J/mol
µ 0.0625 0.06984 0.294 0.23 -
τ0 0.927 0.72 2.1 1.0 MPa

9.16 Tensile test at various strain rates

A truss is loaded axially with a prescribed elongation. In the initial state the length of the
truss is l0 = 100 mm and its cross-sectional area is A0 = 10 mm2. The axial force/elongation
is calculated for various material models. The cross-sectional area will change as a function
of the elongation. The hardening model and tabulated data for polycarbonate are used. The
strain rate is varied.
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Fig. 9.104 : Stress versus strain in polycarbonate for different strain rates

9.17 Tensile test for various polymers

The truss is also loaded with a strain rate ε̇ = 10−1 s−1, using the tabulated parameter values
for polycarbonate, polypropylene, polystyrene and PET.
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Fig. 9.105 : Stress versus strain for different polymers at strain rate 0.1
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