
THREE-DIMENSIONAL MATERIAL MODELS



Contents

1 Three-dimensional material models 4

2 Elastic material behavior 5
2.1 Isotropic elastic material models . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Linear elastic material models . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hyper-elastic material models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Isotropic hyper-elastic material models . . . . . . . . . . . . . . . . . . 12
2.2.2 Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Rivlin models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Other energy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Ogden models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Incremental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Linear P-E model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Stress update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Matrix/column notation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.5 Linear s - A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.6 Stress update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.7 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.8 Matrix/column notation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 Tensile test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.2 Shear test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.3 Inhomogeneous deformation . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Elastoplastic material behavior 25
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Von Mises plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Incremental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Elastic stress predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Iterative stress update . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Linear viscoelastic material behavior 34
4.1 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Incremental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Isotropic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Stress update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Initial stiffness formulation . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



5 Viscoplastic material behavior 40
5.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Von Mises plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Incremental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.1 Elastic stress predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.2 Viscoplastic increment . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.3 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.4 Plane strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.5 Plane stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 Tensile test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Shear test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Nonlinear viscoelastic material behavior 55
6.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Incremental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4.1 Stress update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.2 Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.3 Consistent material stiffness tensor . . . . . . . . . . . . . . . . . . . . 67
6.4.4 Matrix/column notation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.5 Matrix/column notation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.6 Matrix/column notation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.1 Tensile test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.2 Shear test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



1 Three-dimensional material models

In this chapter we consider three-dimensional material models for various material behavior.
Implementation in finite element software is the main focus, which means that the calculation
of the stress and the stiffness during the iterative solution procedure is paramount.

In the following sections we consider models for elastic, elastomeric, elastoplastic, linear
viscoelastic, viscoplastic and nonlinear viscoelastic materials behavior. Implementation in
FEM modules is explained and simple examples are calculated.



2 Elastic material behavior

For elastic materials the 2nd-Piola-Kirchhoff stress tensor P is related to the Green-Lagrange
strain tensor E. The Cauchy stress tensor can be written as a function of the right Cauchy-
Green strain tensor B. To assure the stress to be zero when there is no deformation, it is
more suitable to relate the Cauchy stress to the Finger tensor A.

P = G(E) with E = 1
2(C − I) = 1

2(F c
·F − I)

σ = J−1F ·P ·F c = J−1F ·G(E) ·F c with J = det(F )

= K(A) with A = 1
2(B − I) = 1

2(F ·F c − I)

2.1 Isotropic elastic material models

For an isotropic material a principal strain deformation of a material cube can only result in
normal stresses on its faces. Using its definition it can be shown that the principal directions
of the 2nd-Piola-Kirchhoff stress tensor coincide with the principal strain directions. It is
easily seen that the principal directions of the Cauchy stress tensor coincide with those of the
Finger tensor.

F σ3

~n1
~n02

~n03

~n01

~n2

~n3

σ1

σ2

Fig. 2.1 : Deformation in principal directions

U = λ1~n01~n01 + λ2~n02~n02 + λ3~n03~n03

R = ~n1~n01 + ~n2~n02 + ~n3~n03

F = λ1~n1~n01 + λ2~n2~n02 + λ3~n3~n03

P = JF−1
· (σ1~n1~n1 + σ2~n2~n2 + σ3~n3~n3) ·F−c

= J
{

σ1λ
−2
1 ~n01~n01 + σ2λ

−2
2 ~n02~n02 + σ3λ

−2
3 ~n03~n03

}

= s1~n01~n01 + s2~n01~n01 + s3~n01~n01

P − E model

For a general isotropic material the principal directions of the 2nd-Piola-Kirchhoff stress
tensor P and the Green-Lagrange strain tensor E, coincide. As a result, P can be written
as a polynomial function of E.

Applying Cayley-Hamilton’s theorem, a second-order polynomial relation remains. The



coefficients αi in this relation are not constant. For the isotropic material they are a function
of the invariants of E and have to be determined experimentally.

P = s1~n01~n01 + s2~n02~n02 + s3~n03~n03

E = ε1~n01~n01 + ε2~n02~n02 + ε3~n03~n03

P =
∑

si~n0i~n0i = G(E) =
∑

G(εi)~n0i~n0i = a0I + a1E + a2E
2 + a3E

3 + ...

Cayley-Hamilton’s theorem E3 = J1(E)E2 − J2(E)E + J3(E)I

P = α0I + α1E + α2E
2 with αi = αi {J1(E), J2(E), J3(E)}

σ − A model

For an isotropic material the principal directions of σ and A coincide, which implies that σ

can be written as a polynomial function of A. Applying Cayley-Hamilton’s theorem results
in a second-order polynomial with coefficients depending on the invariants of A.

σ = σ1~n1~n1 + σ2~n2~n2 + σ3~n3~n3

A = A1~n1~n1 + A2~n2~n2 + A3~n3~n3

σ =
∑

σi~ni~ni = K(A) =
∑

K(Ai)~ni~ni = b0I + b1A + b2A
2 + b3A

3 + ...

Cayley-Hamilton’s theorem A3 = J1(A)A2 − J2(A)A + J3(A)I

σ = β0I + β1A + β2A
2 with βi = βi {J1(A), J2(A), J3(A)}

The constitutive equation for the Cauchy stress tensor can also be derived from the expression
for the second Piola-Kirchhoff stress tensor, which reveals that the coefficients βi are related
to the coefficients αi.

σ = J−1F ·P ·F c = J−1F ·

[

α0I + α1E + α2E
2
]

· F c

= J−1F ·

[

(α0 − 1
2α1 + α2)I + (1

2α1 − 1
2α2)C + 1

4α2C
2
]

·F c

= {J3(B)}−1/2
[

(α0 − 1
2α1 + α2)B + (1

2α1 − 1
2α2)B

2 + 1
4α2B

3
]

B3 = J1(B)B2 − J2(B)B + J3(B)I

= J
−1/2
3

[

(1
2α1 − 1

2α2 + 1
4α2J1)B

2 + (α0 − 1
2α1 + α2 − 1

4α2J2)B + 1
4α2J3I

]

A = 1
2(B − I) → B = 2A + I

A2 = 1
4B2 − 1

2B + 1
4I → B2 = 4A2 + 2B − I

= J
−1/2
3

[

(2α1 − 2α2 + α2J1)A
2 + (α0 + 1

2α1 + 1
2α2J1 − 1

4α2J2)A+

(α0 + α1 − 1
2α2 + 3

4α2J1 − 1
4α2J2 + 1

4α2J3)I
]

= β2A
2 + β1A + β0I



2.1.1 Linear elastic material models

The above isotropic elastic material models are nonlinear. The polynomial functions have a
quadratic tensor term and, moreover, the coefficients are functions of the three invariants of
the strain tensor. The first invariant is a linear, the second a quadratic and the third a cubic
function of the tensor.

Simplification towards purely linear models is possible and allowed if it suits the exper-
imental observations.

P − E model

When experiments show that the relation between P and E is linear, conclusions can be
drawn concerning the coefficients αi. The coefficient of the quadratic term, α2, must be
zero. The coefficient of the linear term, α1, must be a constant. The coefficient of the unit
tensor may be a linear, isotropic function of the tensor E, which means it can be written as a
constant times the trace of E. No constant tensor is contained in the linear models, because
stress has to be zero at zero strain.

Substituting an (experimentally motivated) linear relation between P and E in the
definition relation of σ, results in a nonlinear relation between σ and B and vice versa.

P = c0tr(E)I + c1E

Tensile test

For a tensile test only the axial component of P is non-zero and can be expressed in the
axial and cross-sectional stretch ratios λ and µ. Because stresses perpendicular to the axial
direction are zero, µ can be eliminated and the axial stress can be expressed in the axial
stretch λ.

The parameters c0 and c1 can be expressed in the more commonly used Young’s modulus
E and Poisson’s ratio ν.

P=c0
1
2(λ2 − 1) + 2c0

1
2 (µ2 − 1) + c1

1
2(λ2 − 1)

0 =c0
1
2(λ2 − 1) + 2c0

1
2 (µ2 − 1) + c1

1
2(µ2 − 1)







→

1
2(µ2 − 1) = − c0

2c0 + c1

1
2(λ2 − 1) = −ν 1

2 (λ2 − 1)

P =
c1(3c0 + c1)

2c0 + c1

1
2 (λ2 − 1) = E 1

2(λ2 − 1)

F = σA =
λ

µ2
Pµ2A0 = λPA0 = 1

2λ(λ2 − 1)EA0
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Fig. 2.2 : Tensile test: force and cross-sectional area against stretch ratio

Simple shear test : plane strain

For plane strain F33 = 1 holds and thus for the simple shear test det F = 1. To calculate the
shear and normal force, the Cauchy stress has to be derived from the material model.

F = I + γ~e1~e2 → J = det(F ) = 1

E = 1
2 (C − I) = 1

2γ2~e2~e2 + 1
2γ(~e1~e2 + ~e2~e1)

P = c0
1
2γ2I + c1

1
2γ2~e2~e2 + c1

1
2γ(~e1~e2 + ~e2~e1)

σ = J−1F ·P ·F c = F · P ·F c

= 1
2

{

(c0γ
2 + c0γ

4 + c12γ
2 + c1γ

4)~e1~e1 + (c0γ
2 + c1γ

2)~e2~e2 + c0γ
2~e3~e3+

(c0γ
3 + c1γ + c1γ

3)(~e1~e2 + ~e2~e1)
}

pn = ~e2 · σ ·~e2 = 1
2(c0 + c1)γ

2 ; ps = ~e1 ·σ ·~e2 = 1
2c1γ + 1

2 (c0 + c1)γ
3

Fn = pnd0w0 ; Fs = psd0w0
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Fig. 2.3 : Shear test plane strain: shear force and normal force against shear



Simple shear test : plane stress

For plane strain Gs33 = P33 = 0 holds and thus for the simple shear test E33 can be expressed
in E11 and E22. To calculate the shear and normal force, the Cauchy stress has to be derived
from the material model.

σ33 = P33 = 0 → c0(E11 + E22 + E33) + c1E33 = 0 → E33 = − c0

c0 + c1
(E11 + E22)

F = I + (F33 − 1)~e3~e3 + γ~e1~e2

E = 1
2 (F c

·F − I) = 1
2

[

γ2~e2~e2 + γ(~e1~e2 + ~e2~e1) +
{

2(F33 − 1) + (F33 − 1)2
}

~e3~e3

]

F33 =
√

2E33 + 1 → J = det(F ) = F33 =
√

2E33 + 1

P =
c0c1

c0 + c1
(E11 + E22) + c1E

=
c0c1

c0 + c1

1
2γ2I + c1

1
2γ2~e2~e2 + c1

1
2γ(~e1~e2 + ~e2~e1)

σ = J−1F ·P ·F c = J−1
[

P + (γP12 + γP21 + γ2P22)~e1~e1 + γP22(~e1~e2 + ~e2~e1)
]

pn = ~e2 · σ ·~e2 = σ22 ; ps = ~e1 ·σ ·~e2 = σ12

Fn = pndw0 = pnF33d0w0 ; Fs = psdw0 = psF33d0w0
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Fig. 2.4 : Shear test plane stress: shear force and normal force against shear

σ − A model

For linear isotropic behavior the relation between σ and A is also characterised by two
material constants.

σ = c0tr(A)I + c1A



Tensile test

For a tensile test only the axial component of σ is non-zero and can be expressed in the
axial and cross-sectional stretch ratios λ and µ. Because stresses perpendicular to the axial
direction are zero, µ can be eliminated and the axial stress can be expressed in the axial
stretch λ. The parameters c0 and c1 can be expressed in the more commonly used Young’s
modulus E and Poisson’s ratio ν.

σ=c0
1
2(λ2 − 1) + 2c0

1
2(µ2 − 1) + c1

1
2(λ2 − 1)

0=c0
1
2(λ2 − 1) + 2c0

1
2(µ2 − 1) + c1

1
2(µ2 − 1)







→

1
2(µ2 − 1) = − c0

2c0 + c1

1
2(λ2 − 1) = −ν 1

2 (λ2 − 1)

σ =
c0(3c0 + c1)
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Fig. 2.5 : Tensile test: force and cross-sectional area against stretch ratio

Simple shear test : plane strain

A simple shear test for plane strain can also be calculated straightforwardly.

F = I + γ ~e1~e2

B = F ·F c = I + γ2~e1~e1 + γ(~e1~e2 + ~e2~e1)

A = 1
2(B − I) = 1

2 γ2~e1~e1 + 1
2 γ(~e1~e2 + ~e2~e1)

σ = c0
1
2γ2I + c1

1
2γ2~e1~e1 + c1

1
2γ(~e1~e2 + ~e2~e1)

σ33 = c0
1
2γ2

pn = ~e2 ·σ ·~e2 = c0
1
2γ2 ; ps = ~e1 ·σ ·~e2 = c1

1
2γ

Fn = pnd0w0 ; Fs = psd0w0
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Fig. 2.6 : Shear test plane strain: shear force and normal force against shear

Simple shear test : plane stress

A simple shear test for plane stress needs some more consideration. For plane stress, it is
assumed here that σ33 = 0. This assumption results in a relation for F33 = F ·~e3. For simple
shear, we can than calculate the normal and shear stress. The normal and shear forces must
be calculated, taking the deformed area into account.

σ33 = c0(A11 + A22 + A33) + c1A33 = 0 →
A33 = − c0

c0 + c1
(A11 + A22) → F33 =

√

2A33 + 1

σ =
c0c1

c0 + c1
(A11 + A22)I + c1A

A = 1
2 γ2~e1~e1 + 1

2 γ(~e1~e2 + ~e2~e1)

σ =
c0c1

c0 + c1

1
2γ2I + c1

1
2γ2~e1~e1 + c1

1
2γ(~e1~e2 + ~e2~e1)

pn = ~e2 ·σ ·~e2 =
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1
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Fig. 2.7 : Shear test plane stress: shear force and normal force against shear



2.2 Hyper-elastic material models

When an explicit stored energy function is available for an elastic material, it is called hyper-
elastic. The stress tensor can then be calculated as the derivative of the energy function with
respect to the associated strain tensor.

When the stress-strain relation is not derived from a stored energy function, the elastic
model is called hypo-elastic. For large strains such a model predicts the elastic behavior not
correctly. In a closed cycle deformation loop residual stresses and elastic energy will remain.
A hyper-elastic material model describes large elastic strains correctly.

The elastic energy must of course always become zero when there is no deformation. The
function can be formulated with various strain tensors. The stress tensor can be derived by
differentiation of the stored energy function with respect to the strain tensor.

The second Piola-Kirchhoff stress tensor P is derived from an energy function φ(E),
depending on the Green-Lagrange strain tensor. Instead of φ, a function W (C) is usually
specified. Although the stress tensor can now still be derived by differentiation – in this case
W w.r.t. C – an additional requirement must be formulated or incorporated, namely that
stress must be zero (P = O) when there is no deformation (C = I).

φ = φ(E) → W = W (C) →

P =
dφ(dE)

E
=

dW (C)

dC
:
dC

dE
= 2

dW (C)

dC
= G(E)

σ =
1

J
F ·P · F c =

2

J
F ·

dW (C)

dC
·F c

2.2.1 Isotropic hyper-elastic material models

For isotropic material the elastic energy function can be written as a function of the invariants
of E or C.

Isotropic hyper-elastic model : P − E

For isotropic material the energy function φ(E) is only depending on the invariants of the
strain tensor. Again we see that P can be written as a second-order polynomial of E. The
coefficients αi are now functions of the derivatives of φ w.r.t. the invariants of E.

φ = φ(E) = φ{J1(E), J2(E), J3(E)} → P =
∂φ

∂J1

dJ1

dE
+

∂φ

∂J2

dJ2

dE
+

∂φ

∂J3

dJ3

dE

derivatives of invariants

dJ1

dE
= I ;

dJ2

dE
= J1I − E ;

dJ3

dE
= J2I − J1E + E2 →

stress tensor



P =

(

∂φ

∂J1
+

∂φ

∂J2
J1 +

∂φ

∂J3
J2

)

I +

(

− ∂φ

∂J2
− ∂φ

∂J3
J1

)

E +
∂φ

∂J3
E2

= α0I + α1E + α2E
2

Isotropic hyper-elastic model : P − C

For isotropic material the energy function φ(E) is only depending on the invariants of the
strain tensor. Again we see that P can be written as a second-order polynomial of E. The
coefficients αi are now functions of the derivatives of φ w.r.t. the invariants of E.

W = W (C) = W{J1(C), J2(C), J3(C)} → P = 2

(

∂W

∂J1

dJ1

dC
+

∂W

∂J2

dJ2

dC
+

∂W

∂J3

dJ3

dC

)

derivatives of invariants

dJ1

dC
= I ;

dJ2

dC
= J1I − C ;

dJ3

dC
= J2I − J1C + C2 →

stress tensor

P = 2

(

∂W

∂J1
+

∂W

∂J2
J1 +

∂W

∂J3
J2

)

I + 2

(

− ∂W

∂J2
− ∂W

∂J3
J1

)

C + 2
∂W

∂J3
C2

= ᾱ0I + ᾱ1E + ᾱ2E
2

Isotropic hyper-elastic model : σ − A

The Cauchy stress tensor is a function of the 2nd-Piola-Kirchhoff stress tensor and can thus
be derived from the elastic energy function W (C).

σ =
1

J
F ·P · F c =

2

J
F ·

dW (C)

dC
·F c

=
2√
J3

F ·

(

∂W

∂J1

dJ1

dC
+

∂W

∂J2

dJ2

dC
+

∂W

∂J3

dJ3

dC

)

· F c

=
2√
J3

F ·

{(

∂W

∂J1
+ J1

∂W

∂J2
+ J2

∂W

∂J3

)

I +

(

−∂W

∂J2
− J1

∂W

∂J3

)

C +

(

∂W

∂J3

)

C2

}

·F c

=
2√
J3

F ·

(

γ0I + γ1C + γ2C
2
)

·F c =
2√
J3

(

γ0B + γ1B
2 + γ2B

3
)

B3 = J1B
2 − J2B + J3I

=
2√
J3

[

(γ1 + γ2J1)B
2 + (γ0 − γ2J2)B + (γ2J3)I

]

A = 1
2(B − I) → B = 2A + I → B2 = 4A2 + 2B − I

=
2√
J3

[

(4γ1 + 4γ2J1)A
2 + (γ0 + 2γ1 + 2γ2J1 − γ2J2)A+

(γ0 − γ1 + γ2J1 − γ2J2 + γ2J3)I]

= β2A
2 + β1A + β0I



2.2.2 Incompressibility

For a hyper-elastic material model the stress-strain relation is derived from an energy func-
tion W (C). For an isotropic material W is a function of the invariants of C. Due to the
incompressibility, the energy function cannot depend on the third invariant, which has always
the value 1.

From a given function W (C), the 2nd-Piola-Kirchhoff stress tensor can be determined
by differentiation. Subsequently the Cauchy stress tensor can be calculated from P .

J = det(F ) = 1 → det(C) = J3(C) = 1 → W (C) = W{J1(C), J2(C)}

P = 2

(

∂W

∂J1

dJ1

dC
+

∂W

∂J2

dJ2

dC

)

= 2

{(

∂W

∂J1
+

∂W

∂J2
J1

)

I − ∂W

∂J2
C

}

σ = F ·P ·F c = 2

{(

∂W

∂J1
+

∂W

∂J2
J1

)

B − ∂W

∂J2
B2

}

Elastic material behavior can be described by a relation between the Cauchy stress tensor σ

and the left Cauchy-Green strain tensor B = F ·F c. When the material is incompressible
and isotropic, the deformation will not be affected by the addition of a hydrostatic stress pI.

When the deformation is known, the stress cannot be determined, because the hydro-
static stress remains arbitrary. Only the so-called extra stress tensor τ depends solely on B

and can be calculated.
To determine the unknown hydrostatic stress pI the incompressibility condition must be

used.

p

p

p

Fig. 2.8 : Hydrostatic stress state

σ = − pI + F ·P ·F c = − pI + 2

{(

∂W

∂J1
+

∂W

∂J2
J1

)

B − ∂W

∂J2
B2

}

= − pI + τ

2.3 Rivlin models

Energy functions W (C) are generally written as polynomials of (J1 − 3) and (J2 − 3) such
that W = 0 when there is no deformation (C = I → J1 = J2 = 3). The invariants of C can
be expressed in the principal stretch ratios λ1, λ2 and λ3. The polynomial energy function



W (C) can then also be written as a polynomial function of these stretch ratios. This way of
denoting these functions is often referred to as the Rivlin formulation.

W (C) =

m
∑

i=0

n
∑

j=0

Cij{J1(C) − 3}i{J2(C) − 3}j with C00 = 0

J1 = tr(C) = λ2
1 + λ2

2 + λ2
3

J2 = 1
2

{

tr2(C) − tr(C2)
}

= 1
2

{

(

λ2
1 + λ2

2 + λ2
3

)2 −
(

λ4
1 + λ4

2 + λ4
3

)

}

= λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

J3 = det(C) = λ2
1λ

2
2λ

2
3 = 1

W (C) =
m
∑

i=0

n
∑

j=0

Cij

(

λ2
1 + λ2

2 + λ2
3 − 3

)i
(

1

λ2
1

+
1

λ2
2

+
1

λ2
3

− 3

)j

Neo-Hookean model

The Neo-Hookean energy function has only one material parameter : C10. The model de-
scribes the mechanical behavior of natural rubbers rather well.

W = C10(J1 − 3)

σ = − pI + 2C10B

Tensile test

In a tensile test, the axial stress is σ and stresses perpendicular to the axial are zero. The
hydrostatic pressure can then be eliminated and the axial stress and force can be expressed
in the axial stretch ratio λ. The incompressibility condition λµ2 = 1 is taken into account.

B = λ2~e1~e1 + µ2(~e2~e2 + ~e3~e3) = λ2~e1~e1 +
1

λ
(~e2~e2 + ~e3~e3)

σ = −pI + 2C10λ
2~e1~e1 + 2C10

1

λ
(~e2~e2 + ~e3~e3)

σ=−p + 2C10λ
2

0=−p + 2C10
1

λ







→ σ = 2C10(λ
2 − 1

λ
)

F = σA = σµ2A0 = σ
1

λ
A0 = 2C10A0(λ − 1

λ2
)



Mooney-Rivlin model

The mechanical behavior of industrial rubbers cannot be captured well with the one-parameter
Neo-Hookean model. Instead the Mooney-Rivlin model is often used, which has two param-
eters.

W = C10(J1 − 3) + C01(J2 − 3)

σ = − pI + 2{C10 + C01tr(B)}B − 2C01B
2

Tensile test

In a tensile test the hydrostatic pressure can be eliminated and the axial stress and force can
be expressed in the axial stretch ratio λ.

B = λ2~e1~e1 + µ2(~e2~e2 + ~e3~e3) = λ2~e1~e1 +
1

λ
(~e2~e2 + ~e3~e3) ; tr(B) = λ2 +

2

λ

B2 = λ4~e1~e1 +
1

λ2
(~e2~e2 + ~e3~e3)

σ = −pI + 2{C10 + C01(λ
2 +

2

λ
)}{λ2~e1~e1 +

1

λ
(~e2~e2 + ~e3~e3)} − 2C01{λ4~e1~e1 +

1

λ2
(~e2~e2 + ~e3~e3)}

σ=−p + 2{C10 + C01(λ
2 +

2

λ
)}λ2 − 2C01λ

4

0=−p + 2{C10 + C01(λ
2 +

2

λ
)}1

λ
− 2C01

1

λ2















→ σ = 2C10(λ
2 − 1

λ
) + 2C01(λ − 1

λ2
)

F = σA = σµ2A0 = σ
1

λ
A0 = 2A0{C10(λ − 1

λ2
) + C01(1 − 1

λ3
)}

2.3.1 Other energy functions

There are a lot of energy functions used for different elastomeric materials. They all belong
to the polynomial energy functions.

3-term Mooney-Rivlin W = c10(J1 − 3) + c01(J2 − 3) + c11(J1 − 3)(J2 − 3)
Signiorini W = c10(J1 − 3) + c01(J2 − 3) + c20(J1 − 3)2

Yeoh W = c10(J1 − 3) + c20(J1 − 3)2 + c30(J1 − 3)3

2nd-order invariant model

W = c10(J1 − 3) + c01(J2 − 3) + c11(J1 − 3)(J2 − 3) + c20(J1 − 3)2

Kloaner-Segal

W = c10(J1 − 3) + c01(J2 − 3) + c20(J1 − 3)2 + c03(J2 − 3)3

James, Green, Simpson (3rd-order deformation model)

W = c10(J1 − 3) + c01(J2 − 3) + c11(J1 − 3)(J2 − 3) + c20(J1 − 3)2 + c30(J1 − 3)3



2.4 Ogden models

For slightly compressible materials Ogden models are used. The strain energy function is
written in terms of the principal stretch ratios. The first part of the Ogden function can
be shown to be purely deviatoric/ The second part accounts for the volumetric deformation.
Because the volumetric behavior is characterized by a constant bulk modulus, the model is
confined to slightly compressible deformation.

To describe the mechanical behavior of elastomeric materials, which show large volumet-
ric deformations, the foam model can be used. The first part of the energy function is not
purely deviatoric.

W =

N
∑

n=1

µn

αn
J

−αn

3 (λαn

1 + λαn

2 + λαn

3 − 3) + 4.5K

(

1 − J
1
3

)2

with

µn : moduli
αn : exponents
K : bulk modulus
J : volume ratio = det(F )

foam model

W =
N
∑

n=1

µn

αn
(λαn

1 + λαn

2 + λαn

3 − 3) +
N
∑

n=1

µn

βn

(

1 − Jβn

)

2.5 Incremental analysis

In nonlinear analysis, the load is applied in a number of steps, the load increments.

tn

tn+1

F (tn+1)

F (tn)
F n(tn+1)t0

Fig. 2.9 : Incremental deformation



The end-increment state, i.e. deformation and stresses, must be determined such that equilib-
rium equations, material relations and boundary conditions are satisfied. Due to the nonlinear
character of deformation and material behavior, the equations must be solved iteratively. In
each iteration step both the stress and the material stiffness must be updated.

2.5.1 Linear P-E model

2.5.2 Stress update

Elastic material behavior may be described by a linear relation between the second Piola-
Kirchhoff stress tensor P and the Green-Lagrange strain tensor E. This relation can be
derived from an elastic energy function and that is why this model is called hyper-elastic.

For a given deformation the stress in the material can be calculated directly for an elastic
material. The Cauchy stress tensor σ can be calculated from P .

P = c0tr(E)I + c1E with E = 1
2(C − I)

= 1
2c0C : II + 1

2c1C − 1
2(3c0 + c1)I with C = F c

·F

σ = J−1F ·P ·F c = J−1F · (P ·F c) = J−1F · (F ·P c)c

2.5.3 Stiffness

In the Newton-Raphson iterative solution procedure, the variation of the stress tensor must
be expressed in the iterative displacement of material points.

Starting from the P ∼ E elastic model, the relation between δP and δF is calculated.
The variation of the deformation tensor F can be expressed in the gradient of the iterative
displacement vector ~u = δ~x :

δF = L ·F = (F c
·Lc)c with Lc = ~∇~u

Combining the variations δP and δσ leads to a relation between δσ and L.

δP = 1
2c0δC : II + 1

2c1δC

C = F c
· F → δC = δF c

·F + F c
· δF

= 1
2c0 (δF c

·F + F c
· δF ) : II + 1

2c1 (δF c
·F + F c

· δF )

= c0(F
c
· δF ) : II + 1

2c1 (δF c
·F + F c

· δF )

= c0I(F c : δF ) + 1
2c1 {(F c

· δF )c + (F c
· δF )}

σ = J−1F ·P ·F c →

δσ = J−1 [−δJF ·P ·F c + δF ·P ·F c + F · δP ·F c + F ·P · δF c]



δJ = Jtr(L) = JL : I ; δF = L ·F

= J−1 [−(L : I)F ·P · F c + (L ·F ) ·P · F c+

F · δP ·F c + F ·P · (F c
·Lc)]

= −(L : I)σ + L · σ + σ ·Lc + J−1F · δP ·F c

= −σ(I : L) + (σc
· Lc)c + σ ·Lc + J−1F · (F · δP c)c

2.5.4 Matrix/column notation

The tensorial expression is transferred to matrix/column notation.

P = 1
2c0C : II + 1

2c1C − 1
2(3c0 + c1)I with C = F c

·F

P
˜̃

= 1
2c0C

˜̃
T I
˜̃t

I
˜̃

+ 1
2c1C

˜̃
− 1

2(3c0 + c1)I
˜̃

with C
˜̃

= F
t
F
˜̃

σ = J−1F · (F · P c)c

σ
˜̃

= J−1F
(

F
r
P
˜̃ t

)

= J−1F F
r
P
˜̃ t

δP = c0I(F c : δF ) + 1
2c1 {(F c

· δF )c + (F c
· δF )}

δP
˜̃

= c0I
˜̃
F
˜̃

T
t
δF
˜̃ t

+ 1
2c1

{

(F
t
δF
˜̃
)r + (F

t
δF
˜̃
)
}

= c0I
˜̃
F
˜̃

T
tc

δF
˜̃

+ 1
2c1

(

F
tr

δF
˜̃

+ F
t
δF
˜̃

)

= M
0
δF
˜̃

= M
0

(

L
˜̃0

)

t
= M

0
F

tr
L
˜̃ t

= M
1
L
˜̃ t

δσ = −σ(I : L) + (σc
·Lc)c + σ · Lc + J−1F · (F · δP c)c

δσ
˜̃

= −σ
˜̃
I
˜̃

T L
˜̃t

+ σ
tr

L
˜̃t

+ σL
˜̃t

+ J−1F F
r
δP
˜̃ t

= −σ
˜̃
I
˜̃

T L
˜̃t

+ σ
tr

L
˜̃t

+ σL
˜̃t

+ J−1F F
rc

δP
˜̃

=
[

−σ
˜̃
I
˜̃

T + σ
tr

+ σ + J−1F F
rc

M
1

]

L
˜̃t

= M L
˜̃ t

2.5.5 Linear s - A model

2.5.6 Stress update

Elastic material behavior may be described by a linear relation between the Cauchy stress
tensor σ and the Finger tensor A = 1

2(B − I) with B = F ·F c. The above relation cannot
be derived from an elastic energy function and is thus referred to as hypo-elastic.

σ = c0tr(A)I + c1A with A = 1
2(B − I)

= 1
2c0B : II + 1

2c1B − 1
2 (3c0 + c1)I with B = F ·F c



2.5.7 Stiffness

The variation of the Cauchy stress tensor can be related to δF , and consequently to the
gradient of the iterative displacement vector δ~u.

δσ = 1
2c0δB : II + 1

2c1δB

= 1
2c0 {(F · δF c)c + F · δF c} : II + 1

2c1 {(F · δF c)c + F · δF c}
= c0(F · δF c) : II + 1

2c1 {(F · δF c)c + F · δF c}
= c0IF : δF c + 1

2c1 {(F · δF c)c + F · δF c}
with δF = L ·F = (F c

·Lc)c and Lc = ~∇~u

2.5.8 Matrix/column notation

All tensor equations can be trasferred to matrix equations.

σ = 1
2c0B : II + 1

2c1B − 1
2 (3c0 + c1)I with B = F ·F c

σ
˜̃

= 1
2c0B

˜̃
T I
˜̃t

I
˜̃

+ 1
2c1B

˜̃
− 1

2(3c0 + c1)I
˜̃

with B
˜̃

= FF
˜̃ t

δσ = c0IF : δF c + 1
2c1 {(F · δF c)c + F · δF c} with δF = L ·F = (F c

·Lc)c

δσ
˜̃

= c0I
˜̃
F
˜̃

T δF
˜̃

+ 1
2c1

{

F
r
δF
˜̃ t

+ FδF
˜̃ t

}

=
[

c0I
˜̃
F
˜̃

T + 1
2c1

{

F
rc

+ F
c

}]

δF
˜̃

with δF
˜̃

=
(

F
t
L
˜̃t

)

r
= F

tr
L
˜̃ t

=
[

c0I
˜̃
F
˜̃

T F
tr

+ 1
2c1

(

F
rc

F
tr

+ F
c
F

tr

)]

L
˜̃ t

= M L
˜̃ t

2.6 Examples

A square plate is subjected to a tensile and a shear deformation. The two linear elastic
models, described before, are used to model the elastic behavior. Both plane stress and plane
strain states are considered.

2.6.1 Tensile test

A square plate or cylindrical bar is loaded uniaxially using different elastic material models.
Dimensions are listed in the table. For plane stress and axisymmetry, the loading is equivalent
to a tensile test.



Cartesian

initial width w0 100 mm
initial height h0 100 mm
initial thickness d0 0.1 mm

cylindrical

initial radius r0

√

(10/π) mm
initial height h0 100 mm

The axial elongation is prescribed and the resulting axial force is calculated for various elastic
material models. Material parameter values are C = 100000 MPa and ν = 0.3.
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Fig. 2.10 : Tensile force and cross-sectional area versus elongation; plane stress; σ ∼ ε
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Fig. 2.11 : Tensile force and cross-sectional area versus elongation; plane stress; σ ∼ A

model
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Fig. 2.12 : Tensile force and cross-sectional area versus elongation; plane stress; P ∼ E

model.

The latter model is also used in a plane strain tensile test. Both Updated Lagrange and Total
Lagrange formulation are used. The results are the same, which should be the case.
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Fig. 2.13 : Tensile force and cross-sectional area versus elongation; plane strain; P ∼ E

model; Updated Lagrange formulation
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Fig. 2.14 : Tensile force and cross-sectional area versus elongation; plane stress; P ∼ E

model; Total Lagrange formulation



2.6.2 Shear test

The simple shear test is analyzed with one element, where the horizontal displacement/force
in the upper nodes is prescribed. Dimensions are listed in the table.

initial width w0 100 mm
initial height h0 100 mm
initial thickness d0 0.1 mm

Subsequently the material model σ ∼ A and P ∼ E are used in the analysis.
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Fig. 2.15 : Shear and normal force versus shear strain; plane stress; σ ∼ A model
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Fig. 2.16 : Shear and normal force versus shear strain; plane stress; P ∼ E model



2.6.3 Inhomogeneous deformation

h

~e2 ~e2

~e1

h0 h0

~e3 ~e3 ~e1

l0 l

x1 =
l

l0
x01 ; x2 = x02 +

h − h0

h0l0
x01x02 ; x3 = x03

F =

(

l

l0

)

~e1~e01 +

(

h − h0

h0l0
x02

)

~e2~e01 +

(

1 +
h − h0

h0l0
x01

)

~e2~e02 + ~e3~e03

σ = c0tr(A)I + c1A with A = 1
2(F ·F c − I)

= c0
2 [x2

01 + x2
02 + 2x02 + 3]I +

c1
2 [(x2

01 + x2
02 + 2x02)~e1~e1 + 3~e2~e2 + 2x01(~e1~e2 + ~e2~e1)]

pn = ~p ·~e2 = c0(6 + x2
01) + 3c1 ; ps = ~p ·~e1 = 2c1x01



3 Elastoplastic material behavior

The one-dimensional mechanical representation of an elastoplastic model consists of a spring
in series with a parallel arrangement of a spring and friction slider. The series-spring repre-
sents the purely elastic part of the deformation, when stress is below the yield stress. The
elastoplastic response becomes manifest when the stress exceeds the yield stress σy.

After yielding the total strain rate ε̇ is the sum of the elastic strain rate ε̇e and the plastic
strain rate ε̇p. It is only for small strains that we can also add strains. The rate is a fictitious
time derivative as for this material model the stress is not influenced by the strain rate.

H

σy

εeεp

σE

Fig. 3.17 : Discrete model for elastoplastic material behavior

3.1 Kinematics

Transformation from the undeformed configuration at time t0 (position vector ~x0) to the
current configuration at time t (position vector ~x) is described by the deformation tensor
F = (~∇0~x)c, where ~∇0 is the gradient operator with respect to the undeformed state.

The right and left Cauchy-Green strain tensors, C and B, are functions of F as is the
Green-Lagrange strain tensor E. The deformation rate is described by the velocity gradient
tensor L = (~∇~v)c, where ~∇ is the gradient operator with respect to the current state and ~v
is the velocity of the material volume.

The total deformation F is multiplicatively decomposed into an elastic and a plastic
contribution. For the velocity gradient tensor an additive decomposition into the symmetric
deformation rate tensor D and the skew-symmetric spin tensor Ω is used. Both D and Ω

can be split into an elastic and a plastic part.
To make the decomposition unique it is commonly assumed that the plastic rotation rate

during the current increment is zero, i.e. Ωp = 0. Superimposed material rotations are thus
fully represented in F e.



t0

t

F

F p
F e

Fig. 3.18 : Multiplicative decomposition of total deformation

F = (~∇0~x)c = F e ·F p

C = F c
·F ; B = F ·F c ; E = 1

2(C − I)

L = Ḟ · F−1 = (~∇~v)c

= Le + Lp = (De + Ωe) + (Dp + Ωp) = (De + Ωe) + Dp

3.2 Constitutive relations

Elastic deformation

The stress is related to the elastic strain with an elastic material model. In elastoplastic
deformation problems, it can often be assumed that elastic strains are small, which allows
the use of a hypo-elastic generalized Hooke’s law, relating the Cauchy stress tensor σ to the
logarithmic strain tensor Λ.

The material is assumed to be isotropic in which case the elastic material behavior is
characterized by two material constants : the bulk modulus K and the shear modulus G. The
fourth-order unity tensor is defined as : 4I = ~ei~ejδilδjk~ek~el and 4I

rc
is its right conjugate.

The current stress state must be determined from the elastoplastic constitutive model,
which is necessarily a rate formulation, i.e. a relation between a time derivative of the stress
and the deformation rate. To avoid problems with large rigid rotations, the constitutive rela-
tions are formulated in invariant variables. A general invariant stress tensor σA is introduced
first. It can be proved that both σA and σ̇A are invariant, when rigid body rotation (rotation
tensor Q) transforms A into A∗ according to : A∗ = A ·Qc.

The elastic material law can then be reformulated, such that it obeys the objectivity
requirement.

σ = 4C : Λe

4C = c0II + 1
2c1(

4I + 4I
rc

) = KII + 2G
(

4I − 1
3II

)









invariant tensors

σA = A ·σ ·Ac = σ∗

A with A∗ = A ·Qc ∀ Q

σ̇A = A ·

{

(A−1
· Ȧ) · σ + σ · (A−1

· Ȧ)c + σ̇
}

·Ac = A ·

⊙

σA ·Ac = σ̇∗

A

objective elastic law
⊙

σA = 4C : De

Yield criterion and hardening

A yield function F is used to evaluate the stress state and to check whether the deformation
is purely elastic (F < 0) or elastoplastic (F = 0). The current stress state, represented by
the equivalent stress σ̄, is compared to a yield stress σy. Its initial value is σy0. This yield
stress changes with plastic deformation and is therefore related to the effective plastic strain
ε̄p. The relation between σy and ε̄p is described by the hardening law. To decide whether
elastic or elastoplastic deformation occurs, the Kuhn-Tucker relations are used.

yield criterion F = σ̄2 − σ2
y(ε̄p)

effective plastic strain ε̄p =

t
∫

τ=0

˙̄εp dτ

hardening law σy = σy(σy0, ε̄p) with
∂σy

∂ε̄p
= H(ε̄p)

Kuhn-Tucker relations {(F < 0) ∨ (F = 0 ∧ Ḟ < 0)} → elastic
{(F = 0) ∧ (Ḟ = 0)} → elastoplastic

3.2.1 Von Mises plasticity

For the Von Mises yield criterion, the yield surface is a circular cylinder in principal stress
space. The equivalent Von Mises stress can be expressed in the deviatoric stress tensor σd. It
is required that the disspated plastic energy per unit of time is the product of the equivalent
stress and the effective or equivalent plastic strain rate :

σ : Dp = σ̄ ˙̄εp

which leads to the definition of the effective plastic strain rate as a function of the plastic
deformation rate tensor Dp.

σ̄ =
√

3
2σd : σd

˙̄εp =
√

2
3Dp : Dp

F = 3
2σd : σd − σ2

y(ε̄p)



Ḟ = 2σ̄ ˙̄σ − 2σyσ̇y = 2σ̄ ˙̄σ − 2σyH ˙̄εp

= 3σd : σ̇ − 2σyH ˙̄εp = 3σd
A : σ̇A − 2σyH ˙̄εp = 0

Elastoplastic deformation

During elastoplastic deformation (F = 0) the plastic deformation rate Dp is related to the
stress by the flow rule. For a so-called normality or associative flow rule the direction of Dp

is perpendicular to the yield surface in stress space. The length of Dp is characterized by the
plastic multiplier λ̇. The normal to the yield surface can be expressed in the deviatoric stress
σd.

The value of the plastic multiplier λ̇ can be determined from the requirement that the
stress state must always reside on the yield surface during elastoplastic deformation, so :
Ḟ = 0. This relation is referred to as the consistency condition.

F = 0

∂F

∂σ

Dp = λ̇
∂F

∂σ

σ

σ = 0

Fig. 3.19 : Associative flow rule

Dp = λ̇
∂F

∂σ
= λ̇a

a =
∂F

∂σd
:
∂σd

∂σ

=
[

3σd : 4I
]

:
∂

∂σ

{

σ − 1
3 tr(σ)I

}

= 3σd :
(

4I − 1
3II

)

= 3σd

˙̄εp = λ̇
√

2
3a : a

3.3 Constitutive model

The material model can be summarized as a set of constitutive relations. In accordance with
σA, invariant tensors DA and aA are defined. Also a new fourth-order material tensor 4CA

is introduced according to the requirement :

4CA : DA = A ·

4C : D ·Ac ∀ A



The set of differential equations must be integrated over the deformation history to determine
the current stress σ(t) when the current deformation F (t) is known. It is also used to derive
a relation between the variation of stress and deformation, which is an essential part of the
element stiffness matrix.

{(F < 0) ∨ (F = 0 ∧ Ḟ < 0)} → D = De → ˙̄εp = 0
⊙

σA = 4C : D → σ̇A = 4CA : DA

{(F = 0) ∧ (Ḟ = 0)} → D = De + Dp

⊙

σA = 4C : (D − λ̇a)

2σ̄ ˙̄σ − 2σyH ˙̄εp = 0







→

σ̇A = 4CA :
(

DA − λ̇aA

)

3σd
A : σ̇A − 2σyHλ̇

√

2
3aA : aA = 0







σ̇A = 4CA :
(

DA − λ̇aA

)

3σd
A : 4CA : DA − λ̇

(

3σd
A : 4CA : aA + 2σvH

√

2
3aA : aA

)

= 0















σy = σy(σy0, ε̄p) ;

3.4 Incremental analysis

The figure shows the relevant configurations in a large strain plastic deformation process.
Although the time t is used to identify various configurations, it is noted that the material
behavior is considered to be time independent. The variable t is thus a pseudo-time.

Starting from the undeformed configuration at t0 the external load is applied and the
deformation leads to the current configuration t. During a numerical analysis of this defor-
mation process the state of the material is determined at a finite number of discrete mo-
ments ti, i = 0, 1, .., n + 1. The period between two subsequent moments is an increment :
∆ti = ti+1 − ti.

It is assumed that the analysis has brought us to t = tn, the beginning of the last incre-
ment and that all relevant variables are known and satisfying all governing equations (balance
laws, boundary conditions, constitutive relations). The state at the current time t = tn+1,
the end of the current increment has to be determined.

The incremental deformation is described by the deformation tensor F n. The incre-
mental principle elongation factors and directions, λni and ~nni (i = 1, 2, 3), respectively, with
respect to the begin increment state, can be determined from Cn = F c

n ·F n. The incremental
stretch tensor Un and logarithmic strain tensor Λn can be expressed in λni and ~nni.



tn

tn+1

F (tn+1)

F (tn)
F n(tn+1)t0

Fig. 3.20 : Incremental deformation

F (τ) = F n(τ) · F (tn) → F n(τ) = (~∇n~x)c = F (τ) · F−1(tn)

D = 1
2

(

Ḟ n ·F−1
n + F−c

n · Ḟ
c
n

)

= 1
2Rn ·

(

U̇n ·U−1
n + U−1

n · U̇n

)

·Rc
n

Ω = 1
2

{

Ḟ n ·F−1
n − F−c

n · Ḟ
c
n

}

= Ṙn ·Rc
n + 1

2Rn ·

(

U̇n ·U−1
n − U−1

n · U̇n

)

· Rc
n

Un =

3
∑

i=1

λni~nni~nni ; Λn =

3
∑

i=1

ln(λni)~nni~nni

3.4.1 Elastic stress predictor

The stress integration procedure is always started with the calculation of an elastic stress pre-
dictor. It is assumed that the increment is fully elastic and that the begin-increment elasticity
tensor can be used to calculate the rotation neutralized Cauchy stress tensor. Subsequently
the elastic Cauchy stress tensor is calculated and used to evaluate the yield criterion with two
possible outcomes :

1. the increment is indeed fully elastic,

2. the yield criterion is violated which implies that during the increment further elasto-
plastic deformation has taken place.

elastic trial stress σe = σ(tn) + 4C : (Λ − Λ(tn))

yield criterion F = 3
2σd

e : σd
e − σ2

y(σy0, ε̄p(tn))

F ≤ 0 → elastic increment

F > 0 → elastoplastic increment

matrix/column notation



C = KI
˜̃
I
˜̃

T + 2G
(

I − 1
3I
˜̃
I
˜̃

T
)

; Λn → Λ
˜̃n

σ
˜̃De

= σ
˜̃
(tn) + C

c
Λ
˜̃n

→ σDe
→ σe = Rn σDe

RT
n

F = 3
2

(

σ
˜̃Dtr

)T (

σ
˜̃Dtr

)

− σ2
y(ε̄p)

Elastic increment

When the increment is fully elastic the end-increment Cauchy stress equals the calculated
elastic Cauchy stress. As no plastic deformation has occurred during the increment, the
effective plastic strain and the yield stress have not changed.

σ(tn+1) = σe ; ∆λ = 0

ε̄p(tn+1) = ε̄p(tn) ; σy(tn+1) = σy(tn)

Elastoplastic increment

During the increment ∆t = tn+1 − tn the stress evolution equations must be solved. Before
this is possible the invariant tensors ( )A must be specified. It is also necessary to make
some assumptions about the incremental deformation. Because the rigid rotation during
the increment is not uniquely known, rotation neutralized quantities are used. This implies
the specification of the invariant tensors by choosing A = Rc

n resulting in Dienes tensors and
Dienes rates. The complete elastoplastic model can now be formulated in rotation neutralized
quantities σD, DD and aD.

σD = Rc
n · σ · Rn → σ̇D = Rc

n ·

⊙

σD · Rn

DD = Rc
n ·D · Rn = 1

2

(

U̇n · U−1
n + U−1

n · U̇n

)







σ̇D = 4CD :
(

DD − λ̇aD

)

3σd
D : 4CD : DD − λ̇

(

3σd
D : 4CD : aD + 2σyH

√

2
3aD : aD

)

= 0











Rotation neutralized elastoplastic increment

It is assumed that there is no rigid body rotation during the increment. All rigid body rotation
will be taken into account at the end-increment time tn+1. The integrated stress tensor is the
so-called rotation neutralized stress tensor σD.

When it is also assumed that the incremental principal strain directions are constant
during the increment, the tensors U̇n and U−1

n are commuting. With this assumption, the
constitutive equations for the rotation neutralized Dienes stress σD can now be used for
integration.



tn ≤ τ < tn+1 : Rn = I ; DD = D ; aD = a ; 4CD = 4C

τ = tn+1 : Rn(tn+1) = F (tn+1) · U−1(tn+1)

Un(τ) =
3
∑

i=1

λni(τ)~nni(tn)~nni(tn)

D = U̇n · U−1
n =

3
∑

i=1

(

λ̇ni(τ)

λni(τ)

)

~nni(tn)~nni(tn) = Λ̇n

constitutive equations

σ̇D = 4C :
{

Λ̇n − λ̇a
}

3σd
D : 4C : Λ̇n − λ̇

(

3σd
D : 4C : a + 2σyH

√

2
3a : a

)

= 0















During the increment ∆t = tn+1 − tn the stress evolution equations are integrated using an
implicit Euler integration scheme.

The derivative of the incremental logarithmic strain tensor is the end-increment value
divided by the time increment, because Λn(tn) = O.

σD = σD(tn) + 4C : (Λn − ∆λa)

3σd
D : 4C : Λn − ∆λ

(

3σd
D : 4C : a + 2σyH

√

2
3a : a

)

= 0















3.4.2 Iterative stress update

The set of coupled nonlinear equations is solved iteratively following a Newton-Raphson
procedure. The derivative of a is :

∂a

∂σD
=

∂a

∂σd
D

:
∂σd

D

∂σD
=

∂a

∂σd
D

:
(

4I − 1
3 II

)

= 3 4I

From the coupled set of iterative equations δσD and δλ leading to new values of σD and ∆λ.
The iteration process is stopped when the residuals s1 and s2 are small enough.

For a plane stress situation, the deformation tensor must be adapted during the stress
update procedure. This implies that the elastic trial stress will change as well. Excluding
plane stress situations, the elastic trial stress is constant in the stress update procedure, so
δσDe

= O.



4R : δσD + tδλ = −s1

u : δσD + vδλ = −s2







4R = 4I + 3∆λ 4C : 4I

t = 4C : a

u =
(

3 4C − II : 4C
)

: Λn − ∆λ

{

(

3 4C − II : 4C
)

: a + 4σyH
(

2
3a : a

)

−
1
2 a : 4I

}

v = 3 4C : a : σd
D + 2σyH

√

2
3a : a

s1 = σD − σD(tn) − 4C : Λn + ∆λ 4C : a

s2 = 3σd
D : 4C : Λn − ∆λ

(

3σd
D : 4C : a + 2σyH

√

2
3a : a

)

3.4.3 Stiffness

To evaluate the iterative Updated Lagrange weighted residual equation not only the Cauchy
stress σ, but also the relation between the stress variation δσ and Lu = (~∇~u)c has to be
known, i.e. δσ = 4M : Lu.

The consistent stiffness tensor 4M , eventually leads to the consistent stiffness matrix.
It must be derived from the coupled nonlinear equations for σ and ∆λ. Iterative changes
(variations) of δσ and δλ can be derived.

To simplify notation we omit again the upper index i, which indicates the iteration step
number.

σD − σD(tn) − 4C : Λn + ∆λ 4C : a = 0

3σd
D : 4C : Λn − ∆λ

(

3σd
D : 4C : a + 2σyH

√

2
3a : a

)

= 0















δσD = σD(tn) + 4C : δΛn − δλ 4C : a − ∆λ 4C : δa = 0

3δσd
D : 4C : Λn + 3σd

D : 4C : δΛn−

δλ

(

3σd
D : 4C : a + 2σyH

√

2
3a : a

)

−

∆λ

(

3δσd
D : 4C : a + 3σd

D : 4C : δa+

2δσyH
√

2
3a : a + 2σyH

1
2 [23a : a]−1/2 4

3a : δa

)

= 0





































































4 Linear viscoelastic material behavior

The modeling of linear viscoelastic material behavior is based on the principles of superpo-
sition and proportionality. Current stress and strain are given by a Boltzmann integral over
the strain or stress history. Fourth-order relaxation ( 4C) and creep ( 4S) tensors relate stress
to strain and vice versa.

Experiments show that long past history has less impact on the current stress than re-
cent history. This fading memory property motivates the use of Prony series for 4C and 4S.
In the one-dimensional case they represent the behavior of discrete spring-dashpot models.

E1 E2

η1 η2

E∞

Eg

E1 E2

η2η1

Fig. 4.21 : Generalized Maxwell and Kelvin model

σ(t) =

t
∫

τ=0

4C(t − τ) : ε̇(τ) dτ ; ε(t) =

t
∫

τ=0

4S(t − τ) : σ̇(τ) dτ

4C(t) = 4C∞ +
N
∑

i=1

4Cie
−

t
τi ; 4S(t) = 4S∞ +

N
∑

i=1

4Si

{

1 − e
−

t
τi

}

4.1 Constitutive model

We now focus attention on the calculation of the current stress σ(t), because this is of im-
portance in a numerical procedure like the finite element method. The hereditary integral is
evaluated after substitution of the Prony series for 4C(t).

Using the Prony series expression for 4C(t) and assuming the initial strain to be zero
(ε(τ = 0) = O), an expression for σ(t) can be derived.

σ(t) =

t
∫

τ=0

4C(t − τ) : ε̇(τ) dτ

4C(t) = 4C∞ +

N
∑

i=1

4Ci e
−

t
τi



























→

σ(t) =

t
∫

τ=0

[

4C∞ +
N
∑

i=1

4Cie
−

t−τ
τi

]

: ε̇(τ) dτ = 4C∞ : ε(t) +
N
∑

i=1

4Ci :

t
∫

τ=0

e
−

t−τ
τi ε̇(τ) dτ

= 4C∞ : ε(t) +

N
∑

i=1

σi(t)



4.2 Incremental analysis

It is immediately clear that calculation of the stress involves the evaluation of a (large) number
of integrals over the complete time history. For this reason the deformation time period is
subdivided into a discrete number of time increments.

tn

tn+1

F (tn+1)

F (tn)
F n(tn+1)t0

Fig. 4.22 : Incremental deformation

In the numerical analysis of the time dependent behavior, the total time interval [0, t] is
discretized :

[0, t] → [t1 = 0, t2, t3, .., tn, tn+1 = t]

The timespan between two discrete moments in the time interval is a time increment. It is
assumed that these increments are of equal length.

∆t = ti+1 − ti ; i = 1, ..., n

It is assumed that the strain is a linear function of time in each time increment.

ε(τ) = ε(tn) + (τ − tn)
∆ε

∆t
→ ε̇(τ) =

∆ε

∆t

Stress update

The hereditary integral is split in an integral over [0, tn] and an integral over the last or
current increment [tn, tn+1 = t]. Here we consider only the i-th term of the series : σi(t).

σi(t) = 4Ci :

t
∫

τ=0

e
−

t−τ
τi ε̇(τ) dτ = 4Ci :





tn
∫

τ=0

e
−

t−τ
τi ε̇(τ) dτ +

t
∫

τ=tn

e
−

t−τ
τi ε̇(τ) dτ





= 4Ci :



e
−

∆t
τi

tn
∫

τ=0

e
−

tn−τ
τi ε̇(τ) dτ +

t
∫

τ=tn

e
−

t−τ
τi ε̇(τ) dτ







= e
−

∆t
τi

4Ci :

tn
∫

τ=0

e
−

tn−τ
τi ε̇(τ) dτ + 4Ci :

t
∫

τ=tn

e
−

t−τ
τi ε̇(τ) dτ

= e
−

∆t
τi σi(tn) + 4Ci :

t
∫

τ=tn

e
−

t−τ
τi ε̇(τ) dτ

The stress σi(tn) is known from the previous increment. Calculation of ∆σi(t) can be done
analytically because it has been assumed that the strain is a linear function of time in each
time increment.

σi(t) = e
−

∆t
τi σi(tn) + 4Ci :

t
∫

τ=tn

e
−

t−τ
τi

∆ε

∆t
dτ = e

−
∆t
τi σi(tn) + 4Ci :

t
∫

τ=tn

e
−

t−τ
τi dτ

∆ε

∆t

= e
−

∆t
τi σi(tn) + 4Ci : τi

(

1 − e
−

∆t
τi

)

∆ε

∆t

Calculating the current stress does not mean that the Boltzmann integral has to be evaluated
over the total deformation history. When results are stored properly we can easily update
the stress σ(t).

σ(t) = 4C∞ : ε(t) +
N
∑

i=1

σi(t)

= 4C∞ : ε(t) +

N
∑

i=1

[

e
−

∆t
τi σi(tn) + 4Ci : τi

(

1 − e
−

∆t
τi

)

∆ε

∆t

]

4.2.1 Stiffness

The variation of σ(t) results in the consistent material stiffness tensor.

δσ =

[

4C∞ +

N
∑

i=1

4Ci
τi

∆t

(

1 − e
−

∆t
τi

)

]

: δε

= 4M : δε

4.3 Isotropic material

For an isotropic material the mechanical behavior is the same in each material direction and is
characterized by two material parameters, the Lamé coefficients λ and µ. The elastic stiffness
tensor 4C can then be written as :

4C = λII + 2µ 4I
s

where the fourth-order tensors II and 4I
s

have the following index equivalents :



II → δijδkl

2 4I
s

= 4I + 4I
rc → δilδjk + δikδjl

Using the above expression for 4C the hydrostatic and deviatoric parts of the stress tensor
can be decoupled and expressed in the hydrostatic and deviatoric strain tensor, respectively.

Instead of the Lamé coefficients other elastic material parameters are often used : Young’s
modulus E, Poisson’s ratio ν, shear modulus G and bulk modulus K. These parameters are
related as only two independent material parameters exist.

σ = 4C : ε

=
[

λII + 2µ 4I
s]

: ε =
[

λII + µ
(

4I + 4I
rc)]

: ε = λI tr(ε) + 2µ ε

= (3λ + 2µ) 1
3 tr(ε)I + 2µ εd = (3λ + 2µ) εh + 2µ εd = 3K εh + 2G εd

= σh + σd

K = 1
3 (3λ + 2µ) =

E

3(1 − 2ν)
; µ = G =

E

2(1 + ν)
; λ =

Eν

(1 + ν)(1 − 2ν)

For a viscoelastic isotropic material the stress tensor is also split into an hydrostatic and a
deviatoric part. In analogy with the elastic model, time dependent bulk and shear moduli
are used, which are expressed in a Prony series.

σ(t) = σh(t) + σd(t)

= 3

t
∫

τ=0

K(t − τ)
d

dτ

{

εh(τ)
}

dτ + 2

t
∫

τ=0

G(t − τ)
d

dτ

{

εd(τ)
}

dτ

K(t) = K∞ +

n
∑

i=1

Ki e
−

t
τi =

1

3(1 − 2ν)

[

E∞ +

n
∑

i=1

Ei e
−

t
τi

]

G(t) = G∞ +

n
∑

i=1

Gi e
−

t
τi =

1

2(1 + ν)

[

E∞ +

n
∑

i=1

Ei e
−

t
τi

]

4.3.1 Stress update

Discretising the total time interval [0, t] in equal time increments ∆t = ti+1 − ti; i = 1..n
allows an efficient calculation of the stress where an integral only has to be evaluated over the
current increment, which moreover can be done rather straightforwardly when it is assumed
that the incremental strain rate is constant (= linear incremental strain).

σ(t) = 4C∞ : ε(t) +
N
∑

i=1

σi(t)

= 4C∞ : ε(t) +

N
∑

i=1

[

e
−

∆t
τi σi(tn) + 4Ci : τi

(

1 − e
−

∆t
τi

)

∆ε

∆t

]

= 3K∞ ∆εh + 2G∞ ∆εd +
N
∑

i=1

[

e
−

∆t
τi σi(tn) +

τi

∆t

(

1 − e
−

∆t
τi

)

{

3Ki∆εh + 2Gi∆εd
}

]



4.3.2 Stiffness

The relation between a small change in stress and a small change in strain is straightforwardly
derived from the incremental stress relation.

δσ = 3K∞δεh + 2G∞δεd +
N
∑

i=1

τi

∆t

(

1 − e
−

∆t
τi

)

{

3Kiδε
h + 2Giδε

d
}

Matrix/column notation

The relation between the incremental stress and strain tensor can be written in indices with
relation to a vector basis. Components can then be stored in columns and matrices. For
a two-dimensional deformation the following columns for stress and strain components are
defined :

σ
˜̃

T =
[

σ11 σ22 σ33 σ12 σ21

]

; ε
˜̃
T =

[

ε11 ε22 ε33 ε12 ε21

]

Hydrostatic and deviatoric stress/strain components can be related to total stress/strain com-
ponents with the following matrices :

Ah =













1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 0 0
0 0 0 0 0













; Ad =













2
3 −1

3 −1
3 0 0

−1
3

2
3 −1

3 0 0
−1

3 −1
3

2
3 0 0

0 0 0 1 0
0 0 0 0 1













resulting in : ∆ε
˜̃
h = Ah ∆ε

˜̃
; ∆ε

˜̃
d = Ad ∆ε

˜̃

The stress column can then be rewritten.

σ
˜̃
(t) =

(

3K∞ Ah + 2G∞ Ad
)

∆ε
˜̃

+

N
∑

i=1

[

e
−

∆t
τi σ

˜̃i
(tn)+

τi

∆t

(

1 − e
−

∆t
τi

)

{

3Ki Ah + 2Gi Ad
}

]

∆ε
˜̃

δσ
˜̃
(t) =

[(

3K∞ Ah + 2G∞ Ad
)

δε
˜̃
+

N
∑

i=1

τi

∆t

(

1 − e
−

∆t
τi

)

(

3Ki Ah + 2Gi Ad
)

]

δε
˜̃



4.3.3 Initial stiffness formulation

Some implementations of the linear viscoelastic model (e.g. MARC) are formulated in such a
way that the initial moduli K0 and G0 are required. The initial moduli are defined as

K0 = K∞ +

N
∑

i=1

Ki ; G0 = G∞ +

N
∑

i=1

Gi

The relation for stress increment and stress variation can be derived easily.

∆σ(t) = 3K0∆εh + 2G0∆εd −
N
∑

i=1

[

1 −
(

1 − e
−

∆t
τi

)

τi

∆t

]

{

3Ki∆εh + 2Gi∆εd
}

−

N
∑

i=1

(

1 − e
−

∆t
τi

)

{

σh
i (tn) + σd

i (tn)
}

δσ = 3K0δε
h + 2G0δε

d −
N
∑

i=1

[

1 −
(

1 − e
−

∆t
τi

)

τi

∆t

]

{

3Kiδε
h + 2Giδε

d
}

4.4 Example

An axial strain step with amplitude 0.01 is prescribed on an axisymmetric tensile bar with
initial cross-sectional area A0 = 10 mm2. The stress response is calculated for a 12-mode
generalized Maxwell model. The modal parameters are listed in the table.

E [MPa] τ [s] E [MPa] τ [s]

1 3.0e6 3.1e-8 2 1.4e6 3.0e-7
3 3.9e6 3.0e-6 4 5.4e6 2.9e-5
5 1.3e6 2.8e-4 6 2.3e5 2.7e-3
7 7.6e4 2.6e-2 8 3.7e4 2.5e-1
9 3.3e4 2.5e+0 10 1.7e4 2.4e+1
11 8.0e3 2.3e+2 12 1.2e4 2.2e+3
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Fig. 4.23 : Tensile stress versus time for axisymmetric element



5 Viscoplastic material behavior

The one-dimensional mechanical representation of the elastoviscoplastic Perzyna model con-
sists of a spring in series with a friction slider, a hardening spring and a linear viscous dash-
pot. The series-spring represents the elastic part of the material response. The viscoplastic
response, represented by the hardening spring and the viscous dashpot, becomes manifest as
soon as the friction slider ”opens” when the stress σ exceeds a characteristic value, the yield
stress σy.

After yielding, the total strain rate ε̇ is the sum of the elastic strain rate ε̇e and the
viscoplastic strain rate ε̇vp. It is only for small strains that we can add strains.

σE

σy

εeεvp

H

η

Fig. 5.24 : Discrete model for viscoplastic material behavior

5.1 Kinematics

Transformation from the undeformed configuration at time t0 (position vector ~x0) to the
current configuration at time t (position vector ~x) is described by the deformation tensor
F = (~∇0~x)c, where ~∇0 is the gradient operator with respect to the undeformed state.

The right and left Cauchy-Green strain tensors, C and B, are functions of F as is the
Green-Lagrange strain tensor E. Material velocity is taken into account by the deformation
and rotation rate tensors D and Ω, the symmetric and skew-symmetric parts of the velocity
gradient tensor L = (~∇~v)c, where ~∇ is the gradient operator with respect to the current state
and ~v is the velocity of the material volume.

In Perzyna’s model the total deformation F is decomposed multiplicatively into an elastic
and a viscoplastic contribution. Regarding the kinematics, this implies the introduction of
elastic and viscoplastic (rate) tensors.

To make the decomposition unique it is commonly assumed that the viscoplastic rotation
rate is zero, i.e. Ωp = O. Superimposed material rotations are thus fully represented in F e.



t0

t

F

F vp
F e

Fig. 5.25 : Multiplicative decomposition of total deformation

F = (~∇0~x)c = F e ·F vp

C = F c
·F ; B = F ·F c ; E = 1

2 (C − I)

L = Ḟ ·F−1 = (~∇~v)c

= Le + Lvp = (De + Ωe) + (Dvp + Ωvp) = (De + Ωe) + Dvp

5.2 Constitutive relations

Elastic deformation

The stress is related to the elastic strain. Because we want to describe large elastic strains,
the elastic behavior must be described with a hyper-elastic model. In that case it is assumed
that an elastic strain energy function exists, which can be used to calculate the stress. The
2nd-Piola-Kirchhoff stress tensor P is related to the Green-Lagrange strain tensor E. The
current stress state is characterized by the Kirchhoff stress τ = F ·P ·F c.

An elastic energy function is chosen, which characterizes isotropic, compressible material
behavior. The fourth-order material tensor is completely determined by the volume ratio
J = det(F ) and by the constant Lamé coefficients λ and µ, which are related to Young’s
modulus and Poisson’s ratio.

P =
∂W (Ee)

∂Ee
= 2

∂W

∂Ce
= F−1

· τ ·F−c → Ṗ = 2
∂2W

∂C2 : Ċ

W (λ1, λ2, λ3) = 1
2 µ
{

λ2
1 + λ2

2 + λ2
3 − 3 − 2 ln(J)

}

+ 1
2 λ {ln(J)}2

with λ =
νE

(1 + ν)(1 − 2ν)
; µ =

E

2(1 + ν)





















































Yield criterion and hardening

A yield function F is used to evaluate the stress state and to check whether the deformation
is purely elastic (F < 0) or viscoplastic (F ≥ 0). The current stress state, represented by the
equivalent or effective Kirchhoff stress τ̄ , is compared to the current yield stress τy, which
increases from its initial value τy0 due to plastic deformation and is therefore related to the
effective viscoplastic strain ε̄vp. The relation between τy and ε̄vp is described by the hardening
rule. To decide whether elastic or viscoplastic deformation occurs, the Kuhn-Tucker relations
are used.

yield criterion F = τ̄ − τy(ε̄vp)

effective viscoplastic strain ε̄vp =

t
∫

τ=0

˙̄εvp dτ

hardening law τy = τy(τy0, ε̄vp) with
∂τy

∂ε̄p
= H(ε̄p)

Kuhn-Tucker relations F < 0 → elastic deformation
F ≥ 0 → viscoplastic deformation

5.2.1 Von Mises plasticity

For the Von Mises yield criterion, the yield surface is a circular cylinder in principal stress
space. The equivalent Von Mises stress can be expressed in the deviatoric stress tensor τ d.
It is required that the disspated viscoplastic energy per unit of time is the product of the
equivalent stress and the effective or equivalent plastic strain rate :

τ : Dvp = τ̄ ˙̄εvp

which leads to the definition of the effective plastic strain rate as a function of the viscoplastic
deformation rate tensor Dvp.

τ̄ =
√

3
2τ d : τ d

˙̄εvp =
√

2
3 Dvp : Dvp

F =
√

3
2τ d : τ d − τy(ε̄vp)

Viscoplastic deformation

During viscoplastic deformation the direction of the viscoplastic strain rate is defined by the
commonly used normality or associative flow rule : the viscoplastic strain rate is directed
normal to the yield surface in stress space. The length of Dvp is characterized by the rate
of the viscoplastic multiplier λ̇. The normal to the yield surface can be expressed in the



deviatoric stress τ d. The time-derivative of Cvp can be related to Dvp.
In contrast to elastoplastic models, stress states outside the yield surface can exist, which

explains why these viscoplastic models are often called over-stress models.

F = 0

Dvp = λ̇
∂F

∂τ

∂F

∂τ

τ

τ = 0

Fig. 5.26 : Associative flow rule

Dvp = λ̇
∂F

∂τ
= λ̇a → Ċvp = 2F c

·Dvp ·F = 2λ̇ F c
·a ·F

a =
∂F

∂τ d
:
∂τ d

∂τ
=

[

3
2

(

3
2τ d : τ d

)

−1/2
τ d : 4I

]

:

[

∂

∂τ

{

τ − 1
3 tr(τ )I

}

]

= 3
2

(

3
2τ d : τ d

)

−1/2
τ d :

(

4I − 1
3II

)

= 3
2

(

3
2τ d : τ d

)

−1/2
τ d = 3

2

1

τ̄
τ d

˙̄εvp = λ̇
√

2
3 a : a

5.3 Constitutive model

The material model can be summarized as a set of constitutive equations. During viscoplastic
deformation the rate of the viscoplastic multiplier is related to an over-stress function φ(F )
by a fluidity parameter γ and a rate-sensitivity parameter N , which has to satisfy N ≥ 1 to
make φ(F ) convex.

The set of equations must be solved to determine the stress when (an approximation of)
the deformation is known. From the same set of equations a relation between the variation
of stress and deformation is derived.

F < 0 → Ċ = Ċe

Ṗ = 2
∂2W

∂C2 : Ċ ; Ċvp = O ; ˙̄εvp = 0

F ≥ 0 → Ċ = Ċe + Ċvp →

Ṗ = 2
∂2W

∂C2 :
(

Ċ − 2F c
· λ̇a ·F

)

λ̇ = γφ(F ) = γ

(

F

τy0

)N















τy = τy(τy0, ε̄vp) ; ˙̄εvp = λ̇
√

2
3 a : a



5.4 Incremental analysis

The figure shows the relevant configurations in a large strain viscoplastic deformation process.
Starting from the undeformed configuration at time t0 the external load is employed and

the deformation leads to the current configuration at time t. During a numerical analysis of
this deformation process the state of the material is determined at a finite number of discrete
moments ti, i = 0, 1, .., n + 1. The period between two subsequent moments is an increment :
∆ti = ti+1 − ti. The increments are assumed to be of equal length.

It is assumed that the analysis has brought us to t = tn, the beginning of the current
increment and that all relevant variables are known and satisfying all governing equations
(balance laws, boundary conditions, constitutive relations). The state at the current time
t = tn+1, the end of the current increment has to be determined.

The transformation during the current increment is described by the deformation tensor
F n(τ), where τ indicates a moment in time during the last (= current) increment : tn ≤ τ ≤
tn+1.

tn

tn+1

F (tn+1)

F (tn)
F n(tn+1)t0

Fig. 5.27 : Incremental deformation

F (τ) = F n(τ) · F (tn) → F n(τ) = F (τ) · F−1(tn)

F n = (~∇n~x)c = Rn ·Un ; Jn = det(F n) ; ~∇ = F−c
n ·

~∇n

D = 1
2

{

(~∇~v)c + (~∇~v)
}

= 1
2

(

Ḟ n ·F−1
n + F−c

n · Ḟ
c
n

)

5.4.1 Elastic stress predictor

The first step in evaluating the end-increment stress is the calculation of the elastic stress
predictor. As a first assumption the current increment is taken to be purely elastic, so ∆λ = 0.
The elastic trial stress is used to evaluate the yield condition and to see if the assumption of
elastic deformation holds. There are two possibilities :

1. the increment is indeed fully elastic,



2. the yield criterion is violated which implies that during the increment further elastovis-
coplastic deformation has taken place.

elastic trial stress P e = P n + 2
∂2W

∂G2 : (C − C(tn)) → τ e = F ·P e ·F c

yield criterion F =

√

3
2 (τ e)

d : (τ e)
d − τy(τy0, ε̄vp(tn))

F < 0 → elastic increment
F ≥ 0 → elastoviscoplastic increment

matrix/column notation

τ
˜̃e

= A
˜̃

+ H
c
en
˜̃

F =

√

3
2

(

τ
˜̃e

)T (

τ
˜̃e

)

t
− ζ(κ)

with











H = 2 {µ − λ ln(J)} I + λI
˜̃
I
˜̃

T

en = 1
2

(

I − F−T
n F−1

n

)

→ en
˜̃

A = Fn τ(tn)F T
n → A

˜̃

Elastic increment

When it is concluded that the current increment is purely elastic, the end-increment or current
stress equals the calculated elastic trial stress. Viscoplastic strain does not need updating and
is thus also known.

τ (tn+1) = τ e ; ∆λ = 0

ε̄vp(tn+1) = ε̄vp(tn) ; τy(tn+1) = τy(tn)

5.4.2 Viscoplastic increment

During the increment ∆t = tn+1 − tn the stress evolution equations are integrated using an
implicit Euler integration scheme.

Ṗ = 2
∂2W

∂C2 : (Ċ − 2F c
· λ̇a ·F )

λ̇ = γφ(F ) = γ

(

F

τy0

)N















P = P (tn) + 2
∂2W

∂C2 : {C − C(tn) − 2F c
· ∆λa ·F }

∆λ = ∆tγφ(F )

















The current or end-increment time t = tn+1 is not indicated further. Constitutive equations
are reformulated in the Kirchhoff stress tensor τ , using τ = F ·P ·F c, the incremental
deformation tensor F n and the Almansi strain tensor en. A fourth-order elastic material
tensor 4H is introduced and can be calculated for the Neo-Hookean elastic energy function
W .

F−1
· τ ·F−c = F−1(tn) · τ (tn) · F−c(tn) + 2

∂2W

∂C2 : {C − C(tn) − 2F c
·∆λa · F }

∆λ = ∆t γφ(F )











F n = F ·F−1(tn) → C − C(tn) = F c
· (I − F−c

n ·F−1
n ) · F = 2F c

·en ·F

τ = F n · τ (tn) · F c
n + 4F ·

∂2W

∂C2 : F c
· (en − ∆λa) · F ·F c

∆λ = ∆t γφ(F )











4H = 4F ·

(

F ·

∂2W

∂C2 ·F c

)lc,rc

· F c = 2{µ − λ ln(J)} 4I
rc

+ λII

τ = F n · τ (tn) · F c
n + 4H : (en − ∆λa) = τ e − ∆λ 4H : a

∆λ = ∆t γφ(F )







Iterative stress update

The coupled set of equations is solved iteratively following a Newton-Raphson procedure. In
the stress update procedure it may be necessary to take into account the change in the elastic
trial stress and deformation. This is the case in a plane stress situation. Both δJ and δτ tr

can then be expressed in δτ and δλ. New variables (J1, J2, M1,
4M2) are introduced, which

can be specified explicitly later.
From the coupled set of iterative equations δτ and δλ can be solved, whereupon new

(better) values of τ and ∆λ are determined. The iteration process is stopped when the
residuals s1 and s2 are small enough.

When the iteration process has converged, the current values of τ and ∆λ are known.
Then the Cauchy stress σ and the viscoplastic deformation rate Dvp can be determined. The
latter is used to calculate the effective viscoplastic strain ε̄vp. Subsequently the yield stress
is updated according to the hardening rule.

δτ − δτ e + 4H : a δλ + ∆λδ4H : a + ∆λ 4H : δa = −s1

δλ − ∆t γ

(

∂φ

∂F

)

a : δτ − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)

δλ = −s2

















with







































δτ e = M 1δλ + 4M2 : δτ

δ4H =

(

∂ 4H

∂J

)

δJ = 4c δJ

δa =

(

∂a

∂τ

)

: δτ = 4b : δτ

δJ = J1δλ + J2 : δτ

This can be rewritten with some abbreviations.

4R : δτ + t δλ = −s1

u : δτ + v δλ = −s2







4R = 4I + ∆λ 4H : 4b

t = 4H : a

u = −∆t γ

(

∂φ

∂F

)

a

v = 1 − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)

s1 = τ − τ e + ∆λ 4H : a

s2 = ∆λ − ∆t γ φ(F )

Derivatives

The variations of various variables are determined by differentiation.
The hardening law relates the current yield stress to the equivalent viscoplastic strain.

To describe the intrinsic softening followed by hardening, the relation between τy and ε̄vp is
taken to be a polynomial of 7th-order. Coefficients are fitted onto experimental data.

τy = τy0 + hε̄vp + aε̄2
vp + bε̄3

vp + cε̄4
vp + dε̄7

vp

∂ 4H

∂J
= −2λ

1

J
4I = 4c → c = −2λ

1

J
I

(

∂F

∂ε̄vp

)

=
∂

∂ε̄vp
(−τy(ε̄vp)) = −h − 2aε̄vp − 3bε̄2

vp − 4cε̄3
vp − 7dε̄6

vp

(

∂φ

∂F

)

=
∂

∂F

{

(

F

τy0

)N
}

=
N

τy0

(

F (τ
˜
, ε̄vp)

τy0

)N−1

∂a

∂τ
=

∂a

∂τ d
:

∂τ d

∂τ

∂a

∂τ d
=

∂

∂τ d

{

3
2 τ̄−1τ d

}

= 3
2

(

−τ̄−2 ∂τ̄

∂τ d

)

τ d + 3
2 τ̄−1 4I



∂τ d

∂τ
=

∂

∂τ

{

τ − 1
3tr(τ )I

}

= 4I − 1
3II

∂τ̄

∂τ d
=

∂

∂τ d

{

(

3
2τ d : τ d

)1/2
}

= 3
2 τ̄−1τ d = a

=
(

−τ̄−1aa + 3
2 τ̄−1 4I

)

:
(

4I − 1
3II

)

= −τ̄−1aa + 3
2 τ̄−1 4I − 1

2 τ̄−1 4I : II = 4b →
b = −τ̄−1a

˜̃
a
˜̃

T + 3
2 τ̄−1 I − 1

2 τ̄−1 I
˜̃

I
˜̃

T = τ̄−1
(

−a
˜̃

a
˜̃

T + 3
2 I − 1

2 I
˜̃

I
˜̃

T
)

5.4.3 Stiffness

To evaluate the iterative Updated Lagrange weighted residual equation, not only the Cauchy
stress σ, but also the relation between the stress variation δσ and Lu = (~∇~u)c has to be
known, i.e. δσ = 4M : Lu.

The consistent stiffness tensor 4M , eventually leads to the consistent stiffness matrix.
It must be derived from the coupled nonlinear equations for τ and ∆λ. Iterative changes
(variations) of δτ and δλ can be derived. To simplify notation we omit again the upper index
i, which indicates the iteration step number.

To arrive at a relation between δτ and δF n some new tensors are introduced which can
be specified later, when a coordinate system is chosen.

τ = F n · τ (tn) · F c
n + 4H : en − ∆λ 4H : a

∆λ = ∆t γ φ(F )







→

δτ=δF n · τ (tn) · F c
n + F n · τ (tn) · δF c

n + δ 4H : (en − ∆λa)+

4H : δen − 4H : a δλ − ∆λ 4H :

(

∂a

∂τ

)

: δτ

δλ=

[{

∆t γ

(

∂φ

∂F

)}

/

{

1 − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)}]

a : δτ = c1a : δτ































→

{

4I + ∆λ 4H :

(

∂a

∂τ

)

+ c1
4H : aa

}

: δτ =

δF n · τ (tn) · F c
n + F n · τ (tn) · δF c

n + δ 4H : (en − ∆λa) + 4H : δen

4V : δτ = 4E : δF n → δτ = 4V
−1

: 4E : δF n

The additional tensors are calculated below.

δF n · τ (tn) ·F c
n + F n · τ (tn) · δF c

n = 4T : δF n

J = det(F n) = det(F n + δF n) = J(1 + F−1
n : δF n) → δJ = J F−1

n : δF n

δ 4H =

(

∂ 4H

∂J

)

δJ =

(

∂ 4H

∂J

)

(

JF−1
n : δF n

)

δen = −1
2δF−c

n ·F−1
n − 1

2F−c
n · δF−1

n = − 4A1 : δF−1
n

δF−1
n = −F−1

n · δF n ·F−1
n = − 4A2 : δF n







→



δen = ( 4A1 : 4A2) : δF n = 4P : δF n

Using the definition τ = Jσ a relation between δτ and δF n can be derived, which can be
transformed to δσ = 4M : Lu .

τ = Jσ → σ =
1

J
τ →

δσ =
1

J
(δτ − σδJ) =

1

J

{

4V
−1

: 4E − σJF−1
n

}

: δF n = 4C : δF n

= 4C :
{

F−c(tn) · δF c
}c

= 4C :
{

F−c(tn) · F c
·Lc

u

}c

= 4M : Lu

Matrix/column notation

The matrix/column notation for the consistent stiffness matrix is derived.

δσ = 4C : δF n → δσ
˜̃

= C δFn
˜̃ t

δF n =
(

F−c(tn) · δF c
)c → δFn

˜̃
=
(

F−1
t

(tn)δF
˜̃ t

)

t
→ δFn

˜̃ t
= F−1

t
(tn)δF

˜̃ t

δF c = F c
·Lc

u → δF
˜̃ t

= F
t
Lu
˜̃ t

δσ
˜̃

=
[

C F−1
t

(tn)F
t

]

Lu
˜̃ t

= MLu
˜̃ t

M = C F−1
t

(tn)F
t

C =
1

J

(

V −1 E
r
− Jσ

˜̃
Fn
˜̃

−T
)

V = I + ∆λH
c
b + c1H c

a
˜̃
a
˜̃

T

E = T − 2λI
(

en
˜̃
− ∆λa

˜̃

)(

Fn
˜̃

−1
)T

+ H
c
P

5.4.4 Plane strain

For plane strain some terms in the stress update equations vanish. During viscoplastic defor-
mation the volume will not change, so δJ = 0. Also, the elastic trial stress will remain as it
is, i.e. δτ tr = 0.

δJ = J1δλ + J2 : δτ = 0

δτ tr = M1δλ + 4M2 : δτ = O



Iterative stress update

4R : δτ + tδλ = −s1

u : δτ + vδλ = −s2















4R = 4I + ∆λ 4H : 4b ; t = 4H : a

u = −∆t γ

(

∂φ

∂F

)

a ; v = 1 − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)

s1 = τ − τ tr + ∆λ 4H : a ; s2 = ∆λ − ∆t γ φ(F )

Matrix/column notation

It is assumed that there is no deformation in the x3-direction (u3 = 0), which results in the
plane strain deformation in the (x1x2)-plane. The plane strain case can be derived rather
straightforward from the three-dimensional formulation.





R
c

t
˜̃

u
˜̃

T
t

v









δτ
˜̃

δλ



 = −





s
˜̃1

s2





R = I + ∆λH b
t

; t
˜̃

= H a
˜̃t

u
˜̃

= −∆t γ

(

∂φ

∂F

)

a
˜̃

; v = 1 − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)

s
˜̃1

= τ
˜̃
− τ

˜̃tr
+ ∆λHa

˜̃t
; s2 = ∆λ − ∆t γφ(F )

Stiffness

The plane strain stiffness in tensorial notation is analogous to the three-dimensional relation.

δσ = 4C : δF n =
1

J

{

4V
−1

: 4E − σJF−1
n

}

: δF n

4V =
{

4I + ∆λ 4H : 4b + c1
4H : aa

}

4E =
{

4T + 4c : (en − ∆λa)JF−1
n + 4H : 4P

}

δF n · τ (tn) · F c
n + F n · τ (tn) · δF c

n = 4T : δF n

δen = 4P : δF n



Matrix/column notation

Matrix/column notation of the consistent stiffness matrix for plain strain deformation.

δσ
˜̃

= C
(

δF
˜̃n

)

t
=

[

1

J

{

V −1E
r
− σ

˜̃
JF

˜̃
−T
n

}

]

(

δF
˜̃n

)

t

V = I + ∆λH
c
b + c1H c

a
˜̃
a
˜̃

T

E = T + 2λI
(

e
˜̃
− ∆λa

˜̃

)

JF
˜̃
−T
n

+ H
c
P

5.4.5 Plane stress

For plane stress we have to take into account the variation of the trial stress and the defor-
mation.

Iterative stress update

Again the system of equations to be solved can be written with some abbreviations.

4R : δτ + tδλ = −s1

u : δτ + vδλ = −s2















4R = 4I − 4M2 + ∆λ 4C : aJ2 + ∆λ 4H : 4b ; t = −M1 + ∆λ 4C : aJ1 + 4H : a

u = −∆t γ

(

∂φ

∂F

)

a ; v = 1 − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)

s1 = τ − τ trial + ∆λ 4H : a ; s2 = ∆λ − ∆t γ φ(F )

Matrix/column notation

Introduction of a suitable (problem dependent !) coordinate system leads to the transforma-
tion of vectors and tensors into their components, which are stored in columns and matrices.





R
c

t
˜̃

u
˜̃

T
t

v









δτ
˜̃

δλ



 = −





s
˜̃1

s2





R = I − M
2
+ ∆λC a

˜̃r
J
˜̃

T
2

+ ∆λH b
r

; t
˜̃

= −M
1
+ ∆λCa

˜̃t
J1 + Ha

˜̃t

u
˜̃

= −∆t γ

(

∂φ

∂F

)

a
˜̃

; v = 1 − ∆t γ

(

∂φ

∂F

)(

∂F

∂ε̄vp

)

s
˜̃1

= τ
˜̃
− τ

˜̃tr
+ ∆λHa

˜̃t
; s2 = ∆λ − ∆tγφ(F )



Stiffness

The plane stress stiffness in tensorial notation is analogous to the three-dimensional relation.

δσ = 4C : δF n =
1

J

{

4V
−1

: 4E − σJF−1
n

}

: δF n

with
4V =

{

4I + ∆λ 4H :

(

∂a

∂τ

)

+ c1
4H : aa

}

4E =

{

4T +

(

∂ 4H

∂J

)

: (e − ∆λa)JF−1
n + 4H : 4P

}

δF n · τ (tn) ·F c
n + F n · τ (tn) · δF c

n = 4T : δF n

Matrix-column notation

With the assumption that τ13 = τ23 = τ33 = 0, the three-dimensional formulation reduces to
that for two-dimensional plane stress deformation in the (x1x2)-plane. Columns with relevant
components of stress and deformation rate are :

τ
˜

=
[

τ11 τ22 τ12 τ21

]T

D
˜

=
[

D11 D22 D12 D21

]T

During the plane stress return mapping we have

δF11 = δF22 = δF12 = δF21 = 0 and δτ
˜

trial = 0
˜

As deformation in x3-direction is allowed, δJ can be expressed in δF33 :

δJ = (F11F22 − F12F21)δF33 = J1δλ + J
˜

T
2 δτ

˜

which results in the set of iterative equations for δτ
˜

and δλ.

5.5 Examples

5.5.1 Tensile test

A square plate or cylindrical bar is loaded uniaxially. Dimensions are listed in the table.



initial width w0 100 mm

initial height h0 100 mm

initial thickness d0 0.1 mm

initial radius r0

√

(10/π) mm

initial height h0 100 mm

Tensile test at various strain rates

The Perzyna model parameter values for polycarbonate (PC) are used and listed in the table.
The axial elongation is prescribed as a linear function of time with a constant elongation
rate. The tensile bar is axisymmetric with initial cross-sectional area A0 = 10 mm2. The
axial stress and force are shown in the figure as a function of the elongation.

E 1800 MPa ν 0.37 -
σy0 37 MPa H -200 MPa
γ 0.001 1/s N 3 -
a 500 MPa b 700 MPa
c 800 MPa d 30000 MPa

elongation rate
∆̇l

h0
= {0.01, 0.1, 1} s−1
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Fig. 5.28 : Axial stress and force versus elongation for PC.



5.5.2 Shear test

The simple shear test is analyzed with one element, where the horizontal displacement in the
upper nodes is prescribed. Because there are no unknown degrees of freedom, the stiffness
matrix is not used. The shear force is calculated for polycarbonate (PC). The prescribed
strain rate is constant.

initial width w0 100 mm
initial height h0 100 mm
initial thickness d0 0.1 mm

strain rate γ̇ =
u̇

h0
= 0.01 s−1

1 2

34

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

γ

F
x [N

]

Fig. 5.29 : Shear force versus shear strain for plane strain



6 Nonlinear viscoelastic material behavior

The one-dimensional mechanical representation of the nonlinear viscoelastic (Leonov) model
consists of a hardening spring in parallel with a Maxwell model, of which the viscosity is a
nonlinear function of the stress.

For some materials the viscosity is decreased using a damage parameter, to describe
intrinsic softening. Hardening at higher strains is described by the parallel spring.

In the model with hardening, the Cauchy stress σ is additively decomposed in an effective
or driving stress s and a hardening stress w. This decomposition reflects the contribution of
secondary interactions between polymer chains and that of the entangled polymer network.

s

w

η(s)E

H
σ

εe εv

Fig. 6.30 : Model for nonlinear viscoelastic behavior

σ = s + w

6.1 Kinematics

The deformation tensor F is multiplicatively decomposed into an elastic (F e) and a plastic
(F p) contribution : F = F e ·F p. This decomposition follows from the postulate of a stress-
free plastic intermediate configuration Cp. As the decomposition is not unique with respect
to rotational contributions, an extra assumption will later be needed regarding the rotations.

It is assumed that during plastic deformation the volume change is zero, i.e. Jp =
det(F p) = 1 and thus J = det(F ) = det(F e). The elastic volume deformation is decoupled
from the isochoric distortional deformation by the definition of the tensor F̃ e according to
F̃ e = J−1/3F e.

The left Cauchy-Green strain tensor B = F ·F c is used as a strain measure. Its volume
invariant elastic part is given by B̃e = F̃ e · F̃

c
e. The velocity gradient tensor L = (~∇~v)c =

Ḟ · F−1 can be written as the sum of the symmetric deformation rate tensor D and the
skew-symmetric spin tensor Ω : L = D +Ω. Using the decomposition of F , we can split L

in an elastic and a plastic part. This leads to associated tensors De, Dp, Ωe and Ωp.
To make the decomposition of F unique, Ωp is chosen equal to the null tensor. It has

been shown by e.g. Boyce, that this specific choice regarding rotational contributions has no
significant influence on the overall stress-strain behavior.



F

Co

F p Cp

Cc

F e

J1/3I

C̃

F̃ e

F = (~∇0~x)c = F e ·F p = J1/3I · F̃ e ·F p

C = F c
·F ; B = F ·F c → B̃e = F̃ e · F̃

c
e

L = Ḟ · F−1 = (~∇~v)c

= Le + Lp = (De + Ωe) + (Dp + Ωp) = (De + Ωe) + Dp

6.2 Constitutive relations

Stress decomposition

The deviatoric part of the driving stress, sd, is related to isochoric elastic deformation B̃
d
e

through a generalized Hookean relation. The hydrostatic part sh = −pI (p = hydrostatic
material pressure) is related to the volumetric deformation. Hardening is modeled according
to Gaussian chain statistics as this model is applicable to a large number of thermoplastic
polymers, both amorphous and semi-crystalline, up to very high extension ratios.

Material parameters are : the shear modulus G, the bulk modulus κ and the hardening
modulus H. For the elastic part to be hyper-elastic, the shear modulus G should be replaced
by G

J .

σ = s + w = sd + sh + w

s = GB̃
d
e + κ(J − 1)I ; w = HB̃

d

Elastic deformation

As the model describes time- and history-dependent behavior, the elastic strain must be

updated by integration of appropriate evolution equations for B̃e. The expression for ˙̃
Be can

be derived starting from B̃e = F̃ e · F̃
c
e and using the decomposition F̃ = F̃ e · F p and the

assumption Ωp = O.



B̃e = F̃ e · F̃
c
e → ˙̃

Be = ˙̃
F e · F̃

c
e + F̃ e ·

˙̃
F

c

e

F̃ = F̃ e ·F p → F̃ e = F̃ ·F−1
p → ˙̃

F e = ˙̃
F ·F−1

p + F̃ · Ḟ
−1
p

˙̃
Be =

(

˙̃
F ·F−1

p + F̃ · Ḟ
−1
p

)

· F̃
c
e + F̃ e ·

(

F−c
p ·

˙̃
F

c
+ Ḟ

−c
p · F̃

c
)

=
(

˙̃
F ·F−1

p · F̃
−1
e + F̃ · Ḟ

−1
p · F̃

−1
e

)

· B̃e +

B̃e ·

(

F̃
−c
e ·F−c

p ·

˙̃
F

c
+ F̃

−c
e · Ḟ

−c
p · F̃

c
)

=
(

L̃ + F̃ e · F p · Ḟ
−1
p F̃

−1
e

)

· B̃e + B̃e ·

(

L̃
c
+ F̃

−c
e · Ḟ

−c
p ·F c

p · F̃
c
e

)

F p ·F−1
p = I → F p · Ḟ

−1
p = −Ḟ p ·F−1

p →
= (L̃ − Dp) · B̃e + B̃e · (L̃

c − Dp)

Viscoplastic deformation

The viscoplastic deformation rate Dp is related to the deviatoric stress sd, through the vis-
cosity, which is a nonlinear function of the equivalent stress s̄, the hydrostatic pressure p, the
absolute temperature T and the damage parameter D.

For polymers the Eyring viscosity function is successfully used and for metal alloys the
viscosity function of Bodner-Partom ([?],[?],[?]).

For the equivalent deviatoric stress s̄ is the Von Mises definition is used.

Dp =
1

2η
sd

η = η(s̄, p, T,D)

s̄ =
√

3
2sd : sd

p = κ(J − 1)I

Eyring viscosity

For polymer materials the plastic deformation rate tensor Dp is related to the deviatoric
stress sd by an Eyring viscosity η. This is a function of the equivalent Von Mises stress
s̄, the hydrostatic stress p and the absolute temperature T . In the model, presented here,
the viscosity is depending on an intrinsic softening quantity D, determined by an evolution
equation, which has to be solved with the other constitutive relations.

Material parameters are :



A0 time constant
∆H activation energy
R universal gas constant
p hydrostatic pressure
µ parameter describing pressure dependence
V shear activation volume

D∞ saturation value of D

η =
As̄

√
3 sinh

(

s̄√
3τ0

)

s̄ =
√

3
2sd : sd

A = A0 exp

[

∆H

RT
+

µp

τ0
− D

]

τ0 =
RT

V
; p = −1

3 tr(σ)

Ḋ = h

(

1 − D

D∞

)

s̄√
6 η

; D ∈ [0,D∞]

Bodner-Partom viscosity

To describe viscoplastic behavior of metals, the plastic deformation rate tensor Dp is related
to the deviatoric stress sd by a Bodner-Partom viscosity η. This is a function of the equivalent
Von Mises stress σ̄ and Z, the resistance to plastic flow. Γ0 is a constant which reflects the
smoothness of the transition from the elastic to the viscoplastic response and n characterizes
the rate sensitivity of the viscoplastic response. The plastic flow resistance Z depends on the
equivalent plastic strain ε̄p. Its lower and upper bounds are Z0 and Z1.

The Bodner-Partom model corresponds to isotropic hardening.

η =
s̄√

12Γ0
exp

[

1
2

(

Z

σ̄

)2n
]

s̄ =
√

3
2sd : sd

Z = Z1 + (Z0 − Z1)e
−mε̄p

˙̄εp =
√

2
3Dp : Dp → ε̄p

Plastic strain rate

The current value of B̃e(t) can be determined by integration of ˙̃
Be. However, the integrand

˙̃
Be is not objective, so that rigid body rotations will influence the results, which is of course

not allowed. The problem of non-objectivity of ˙̃
Be can be circumvented by using an evolution



equation for the Cauchy-Green plastic strain tensor Cp, which is invariant.

Starting from F̃ an expression for Ċp can be derived, containing ˙̃
Be. With the earlier

derived expression for ˙̃
Be, Ċp can be expressed in B̃e and Dp. The relation between Dp

and B̃
d
e allows Ċp to be related to B̃e and Cp. This equation states that the direction of

the plastic strain rate is defined by the directional tensor A, while the plastic strain rate
magnitude is governed by the characteristic plastic deformation rate Γ.

The plastic strain rate is invariant for rigid body rotations. It is shown in literature that
this formulation with a plastic predictor, can be used to apply an implicit, robustly stable
and efficient time integration procedure.

F̃ = F̃ e · F p → Cp = F c
p ·F p = F̃

c
· B̃

−1
e · F̃ →

Ċp = F̃
c
· B̃

−1
e ·

[

B̃e · L̃
c
+ B̃e ·

˙̃
B

−1

e · B̃e + L̃ · B̃e

]

· B̃
−1
e · F̃







˙̃
Be = (L̃ − Dp) · B̃e + B̃e · (L̃

c − Dp) →
B̃e ·

˙̃
B

−1

e = −L̃ − B̃e · L̃
c
· B̃

−1
e + Dp + B̃e · Dp · B̃

−1
e

















































→

Ċp = F̃
c
· B̃

−1
e ·

[

Dp · B̃e + B̃e ·Dp

]

· B̃
−1
e · F̃

with Dp =
1

2η
sd =

G

2η
B̃

d
e →

=
G

η

(

C̃ − 1
3 tr(B̃e)Cp

)

= Γ

(

C̃ − 1

α
Cp

)

= Γ A

6.3 Constitutive model

The material model can be summarized as a set of constitutive equations. The differential
equations must be integrated to determine the current elastic strain and stress. Also the
variation of he stress must be derived from the constitutive model, representing the current
stiffness.

J = det(F ) → F̃ = J−1/3F → B̃ = F̃ · F̃
c → w = HB̃

d

p = κ(J − 1) → sh = pI

Ċp =
G

η

(

C̃ − 1
3tr(B̃e)Cp

)

B̃e = F̃ ·C−1
p · F̃

c











→ sd = GB̃
d
e → s̄ =

√

3
2sd : sd

σ = sd + sh + w



6.4 Incremental analysis

The plastic strain Cp at the current time t must be determined by integration of the differential
equation for Ċp(τ). In an incremental procedure the total deformation period is subdivided
into a number of sequential time increments : ∆t = ti+1 − ti ; i = 0 · · · n. A solution for
the governing equations is determined for the discrete end-increment times, starting from
the known state – with known values of all variables – at the begin-increment time. This
implies that the differential equation for Ċp has to be solved for the last increment tn → tn+1

assuming that Cp(tn) is known. For simplicity we skip the indication of the current end-
increment time tn+1.

We now focus attention on the last increment [tn, tn+1]. It is assumed that at time tn
the configuration Cn is completely known and all equations are satisfied. The begin-increment
state Cn at τ = tn is taken as the reference configuration for deformation variables, which is
known as the Updated Lagrange procedure.

F

F (tn)

Co

F p

Cn

F n

F np
F̃ n

Cp

Cc

F e

J1/3I

C̃

F̃ e

Fig. 6.31 : Incremental deformation

F (τ) = F n(τ) · F (tn) → F n(τ) = F (τ) · F−1(tn)

F̃ (τ) = F̃ n(τ) · F̃ (tn)

F n =
(

~∇n~x
)c

= Rn ·Un

Incremental plastic strain

Using the multiplicative decomposition, an expression for Cpn
(τ) can be derived. It contains

the tensor ¯̃
B

−1

en
which is the rotation neutralized version of B̃

−1
e :

¯̃
B

−1

en
= Rc

n · B̃
−1
e ·Rn



where Rn is the incremental rotation tensor.

Cp(τ) = F c
p(τ) · F p(τ) = F̃

c
(τ) · B̃

−1
e (τ) · F̃ (τ)

with F̃ (τ) = F̃ n(τ) · F̃ (tn) →
= F̃

c
(tn) ·

[

F̃
c
n(τ) · B̃

−1
e (τ) · F̃ n(τ)

]

· F̃ (tn)

= F̃
c
(tn) · Cpn

(τ) · F̃ (tn)

incremental rotation neutralized plastic strain

Cpn
(τ) = F̃

c
n(τ) · B̃

−1
e (τ) · F̃ n(τ)

= Ũn(τ) ·

[

Rc
n(τ) · B̃

−1
e (τ) · Rn(τ)

]

· Ũn(τ)

= Ũn(τ) ·

¯̃
B

−1

en
(τ) · Ũn(τ)

Constitutive equations

With the incremental procedure the constitutive model is formulated in the incremental vari-
ables.

J = det(F ) → F̃ = J−1/3F → B̃ = F̃ · F̃
c → w = HB̃

d

p = κ(J − 1) → sh = pI

Ċpn
=

G

η

(

C̃n − 1
3tr
(

¯̃
Ben

)

Cpn

)

¯̃
Ben

= Ũn ·C−1
pn

· Ũ
c
n → B̃e = Rn ·

¯̃
Ben

·Rc
n

Ḋ = h

(

1 − D

D∞

)

s̄√
6 η

η = η(s̄, p, T,D)







































→ sd = GB̃
d
e → s̄ =

√

3
2sd : sd

σ = sd + sh + w

6.4.1 Stress update

The incremental plastic strain rate Ċpn
(τ) can be integrated over the last increment tn → tn+1

to determine Cpn
(tn+1). An implicit backward Euler integration scheme is used. With

Ũn(tn) = I we have Cpn
(tn) = ¯̃

B
−1

en
(tn) = B̃

−1
en

(tn).
The scalar λ is the so-called elasticity scalar, a state variable indicating the proportion of

incremental elastic/plastic strains with respect to the incremental total strains (λ = 1, fully



elastic increment, and λ = 0, fully plastic increment). This parameter depends on η and thus
on s and Cp. The isochoric elastic strain B̃e can be calculated from Cpn

and F̃ n.

Ċpn
(τ) = Γ (τ)

[

C̃n(τ) − 1

ᾱn(τ)
Cpn

(τ)

]

;
1

ᾱn
= 1

3tr
(

¯̃
Ben

)

1

∆t
[Cpn

− Cpn
(tn)] = Γ

[

C̃n − 1

ᾱn
Cpn

]

→

Cpn
=

ᾱn ∆t Γ

ᾱn + ∆t Γ
C̃n +

ᾱn

ᾱn + ∆t Γ
Cpn

(tn) →

Cpn
= ᾱn(1 − λ)C̃n + λCpn

(tn) ; λ =
ᾱn

ᾱn + ∆t Γ
= elasticity parameter

B̃e = Rn ·

¯̃
Ben

·Rc
n = F̃ n · C−1

pn
· F̃

c
n

Sub-incremental plastic strain update

The differential equation for the incremental plastic strain can be integrated more accu-
rately by subdividing the current increment ∆t = tn+1 − tn in a number (ns) of sub-
increments δt = ∆t/ns. The known iterative approximation for the end-increment defor-
mation (F̃ n → C̃n) is also subdivided and subsequently values for Cj

pn
are determined with

a backward Euler integration scheme.
The incremental rotation is not taken into account during this procedure but incor-

porated afterward at the end-increment time. It is also assumed that the principal strain
directions do not change during the integration procedure.

The sub-incremental integration scheme results in a more accurate determination of Cpn

and thus σ. It allows for larger incremental time steps.
Be aware that the final λj = λns+1 is not the elasticity parameter λ introduced ear-

lier, indicating the elastic part of the increment. This λ must be calculated without using
sub-increments or just according to

λ =
ᾱn

ᾱn + ∆tΓ
=

1

1 + ∆tΓ

where we assumed ᾱn = 1.

Ċpn
(τ) = Γ (τ)

[

C̃n(τ) − 1

ᾱn(τ)
Cpn

(τ)

]

;
1

ᾱn
= 1

3tr
(

¯̃
Ben

)

sub-incremental deformation : j = 1 · · · ns + 1
j = 1 : τ = tn ; j = ns + 1 : τ = tn+1

δt = ∆t/ns ; δC̃n =
{

C̃n

}1/ns
; C̃

j
n =

{

δC̃n

}j











1

δt

[

Cj
pn

− Cj−1
pn

]

= Γ j

[

C̃
j
n − 1

ᾱj
n

Cj
pn

]

→

Cj
pn

=
ᾱj

n δt Γ j

ᾱj
n + δt Γ j

C̃
j
n +

ᾱj
n

ᾱj
n + δt Γ j

Cj−1
pn

→



Cj
pn

= ᾱj
n(1 − λj)C̃

j
n + λjCj−1

pn
; λj =

ᾱj
n

ᾱj
n + δt Γ j

incremental plastic strain Cpn
= Cpn

(tn+1) = Cns+1
pn

total isochoric elastic strain B̃e = Rn ·

¯̃
Ben

· Rc
n = F̃ n ·C−1

pn
· F̃

c
n

Iterative scalar variable update

The current plastic strain depends on two scalar variables : the elasticity parameter λ and the
softening parameter D. These are a function of the stress σ, which implies that the integration
has to be carried out iteratively. A Newton-Raphson iterative procedure is employed and the
resulting equation system involves partial derivatives of λ and D, which can be calculated
rather straightforwardly.

After convergence of the iterative process the (sub)incremental plastic strain and stress is
known, but beware that these are only approximations for the real end-increment values. The
update procedure is part of the iterative procedure which has to be repeated until convergence
is reached.

λ = 1/(1 + ∆tΓ ) → f(λ,D) = λ(1 + ∆tΓ ) = 1

1
∆t {D − D(tn)} = Ḋ → g(λ,D) = D − ∆tḊ = D(tn)

Newton-Raphson iterative solution procedure
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∂f

∂λ
= 1 + ∆tΓ + λ∆t

∂Γ

∂λ
= 1 + ∆tΓ − λ∆t

G

η2

∂η

∂σ̄

∂σ̄

∂λ

= 1 + ∆tΓ − λ∆t
G

η2

[

η

(

1

σ̄
− 1√

3τ0

)]

σ̄

∂f

∂D
= λ∆t

∂Γ

∂D
= −λ∆t

G

η2

∂η

∂D
= λ∆t

G

η2
η = λ∆tΓ

∂g

∂λ
= −∆t

∂Ḋ

∂λ
= −∆t

∂Ḋ

∂σ̄

∂σ̄

∂λ
= −∆t

[

Ḋ√
3τ0

]

σ̄

∂g

∂D
= 1 − ∆t

∂Ḋ

∂D
= 1 − ∆t

[

Ḋ − hσ̄√
6D∞η

]



Matrix/column notation

The tensors and vectors in the presented mathematics can be written in components w.r.t.
a vector basis. The components are stored in columns and matrices and the tensor formu-
lations are transferred into matrix/column formulations which can be implemented rather
straightforwardly in a computer code.

J = det(F ) → F̃ = J−1/3F → B̃ = F̃ F̃
T → w = HB̃

d

p = κ(J − 1) → sh = pI

λ = 1/(1 + ∆tΓ )

1
∆t {D − D(tn)} = Ḋ















→ λ,D

Cpn
= (1 − λ)C̃n + λCpn

(tn)

¯̃Ben
= Ũn C−1

pn
Ũ

T
n

s̄d = G ¯̃Ben
→ s̄ =

√

3
2tr(s̄d s̄d)

η = η(s̄, p, T,D)



















































































→ ¯̃Ben
→















B̃e = Rn
¯̃Ben

RT
n →

sd = GB̃
d
e

σ = sd + sh + w

6.4.2 Stiffness

The stress is related to the elastic isochoric strain B̃e, the volume change J and the total
isochoric strain B̃. Each of the three quantities will be considered separately and relations
between their variations and δF will be derived.

The consistent material stiffness tensor relates the iterative change of the Cauchy stress
tensor δσ to the iterative displacement δ~u. In the derivation of this relation it is assumed
that approximate end-increment values of all relevant variables are known. 4Sd,

4Sh and
4H are properly defined fourth-order tensors.

σ = sd + sh + w = GB̃
d
e + κI(J − 1) + HB̃

d

B̃e = F̃ ·C−1
p · F̃

c

Cp = (1 − λ)C̃ + λCp(tn)

F̃ = J−1/3F



































δσ = δsd + δsh + δw

= GδB̃
d
e + κ IδJ + H δB̃

d
=
(

4Sd + 4Sh + 4H
)

: δF

= 4S : δF = 4S
rc

: δF c with δF c = ~∇0~u = F c
·
~∇~u = F c

·Lc
u

= 4S
rc

: (F c
·Lc

u)

= 4M : L
c

u

Elastic strain variation

The elastic strain B̃e must be calculated from the total deformation F̃ and the plastic strain
Cp. Its variation is related to δF̃ and δCp which will be considered separately.

B̃e = F̃ ·C−1
p · F̃

c

δB̃e = δF̃ ·C−1
p · F̃

c − F̃ ·C−1
p · δCp · C−1

p · F̃
c
+ F̃ ·C−1

p · δF̃
c

=
(

F̃ · C−c
p · δF̃

c
)c

− F̃ ·C−1
p ·

(

F̃ · C−c
p · δCc

p

)c
+ F̃ ·C−1

p · δF̃
c

=
(

M (1)
· δF̃

c
)c

− M (2)
·

(

M (1)
· δCc

p

)c
+ M (2)

· δF̃
c

B̃
d
e = B̃e − 1

3tr(B̃e)I =
(

4I − 1
3II

)

: B̃e

δB̃
d
e =

(

4I − 1
3II

)

: δB̃e

Plastic strain variation

The variation of the plastic strain Cp is related to δF̃ (via δC̃) and δλ. These variations will
be considered separately.

Cp = (1 − λ)C̃ + λCp(tn)

δCp = (1 − λ)δC̃ +
(

Cp(tn) − C̃
)

δλ

= (1 − λ)
(

δF̃
c
· F̃ + F̃

c
· δF̃

)

+
(

Cp(tn) − C̃
)

δλ

= (1 − λ)
[(

F̃
c
· δF̃

)c
+ F̃

c
· δF̃

]

+
(

Cp(tn) − C̃
)

δλ

Deformation tensor variation

The variation of the isochoric deformation tensor F̃ can be expressed in the variation of the
total deformation tensor F . The volume ratio J is assumed to be constant in this variation.

F̃ = J−1/3F

δF̃ = −1
6J−1/3FI :

(

δF ·F−1 + F−c
· δF c

)

+ J−1/3δF

= −1
3J−1/3F

(

F−c : δF c
)

+ J−1/3δF



Elasticity scalar variation

The variation δλ of the elasticity parameter λ can be expressed in δB̃e and δF , starting from

λ =
1

1 + ∆tΓ
=

η

η + G∆t
→ δλ =

λ∆tΓ

G∆t + η
δη

The variation δη can be written as :

δη =
∂η

∂σ̄
δσ̄ +

∂η

∂p
δp +

∂η

∂D

∂D

∂σ̄
δσ̄ +

∂η

∂D

∂D

∂p
δp

δσ̄ =
3G2

2σ̄
B̃

d
e : δB̃

d
e =

3G2

2σ̄
B̃

d
e : δB̃e

δp = −κJtr(δF ) = −κJI : δF

=
3G2

2σ̄

(

∂η

∂σ̄
+

∂η

∂D

∂D

∂σ̄

)

B̃
d
e : δB̃e − κJ

(

∂η

∂p
+

∂η

∂D

∂D

∂p

)

I : δF

= h1B̃
d
e : δB̃e + h2I : δF

A number of partial derivatives must be calculated to determine h1 and h2.

δλ =
λ∆tΓ

G∆t + η
δη = l1B̃

d
e : δB̃e + l2I : δF

l1 =
λ∆t Γ h1

∆t G + η
; l2 =

l1h2

h1

h1 =
3G2

2σ̄

(

∂η

∂σ̄
+

∂η

∂D

∂D

∂σ̄

)

; h2 = −κJ

(

∂η

∂p
+

∂η

∂D

∂D

∂p

)

∂η

∂σ̄
= η

(

1

σ̄
− 1√

3τ0

)

;
∂η

∂p
=

ηµ

τ0
;

∂η

∂D
= −η

∂D

∂σ̄
=

∆t ∂Ḋ
∂σ̄

1 − ∆t ∂Ḋ
∂D

;
∂D

∂p
=

∆t ∂Ḋ
∂p

1 − ∆t ∂Ḋ
∂D

∂Ḋ

∂σ̄
=

Ḋ√
3τ0

;
∂Ḋ

∂p
= − Ḋµ

τ0
;

∂Ḋ

∂D
= Ḋ − hσ̄√

6D∞ η

with Ḋ = h

(

1 − D

D∞

)

σ̄√
6 η

Deviatoric stress variation

The variation of the deviatoric stress tensor is related to δB̃
d
e and subsequently to δF :

δsd = GδB̃
d
e = 4Sd : δF



Hydrostatic stress variation

The variation of the hydrostatic stress sh is related to the variation of the volume factor J .
The latter can be related to the variation of F , resulting in a relation between δsh and δF .

δsh = κ IδJ = 4Sh : δF

J̇ = J tr(D) = J 1
2 tr

{

Ḟ · F−1 +
(

Ḟ ·F−1
)c}

→

δJ = 1
2J tr

(

δF ·F−1 + F−c
· δF c

)

= 1
2J
(

F−c : δF c
)

+ 1
2J
(

F−c : δF c
)

= J F−c : δF c = J F−1 : δF

Hardening stress variation

The hardening stress w is related to the deviatoric total volume invariant strain B̃
d
. The

variation δw can be related to δF .

δw = H δB̃
d

= 4H : δF

B̃ = F̃ · F̃
c

δB̃ = δF̃ · F̃
c
+ F̃ · δF̃

c

B̃
d

= B̃ − 1
3tr(B̃)I =

(

4I − 1
3II

)

: B̃

δB̃
d

=
(

4I − 1
3II

)

:
{(

F̃ · δF̃
c
)c

+ F̃ · δF̃
c
}

6.4.3 Consistent material stiffness tensor

The variation of the Cauchy stress δσ is related to the variation of the deformation tensor
δF . In the iterative weighted residual equation δσ must be related to the gradient of the
iterative displacement Lu = (~∇~u)c = (~∇δ~x)c. The resulting fourth-order tensor 4M is the
consistent material stiffness tensor.

The components of δσ (in column δσ
˜̃
) and Lu (in column L

˜̃u
) are related by the consistent

stiffness matrix M .

δσ = δsd + δsh + δw

=
(

4Sd + 4Sh + 4H
)

: δF = 4S : δF = 4S
rc

: δF c

with δF c = ~∇0~u = F c
·
~∇~u = F c

·Lc
u →

= 4S
rc

: (F c
·Lc

u) = 4M : L
c

u



6.4.4 Matrix/column notation

δB̃
˜̃ e

=
(

M (1)
cr

+ M (2)
c

)

δF̃
˜̃
− M (2)

c
M (1)

c
δC
˜̃ p

; M (1) = F̃ C−T
p ; M (2) = F̃ C−1

p

= A(1)δF̃
˜̃
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˜̃ p
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˜̃

d

e
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(

I − 1
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˜̃
I
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T
t

)

δB̃
˜̃ e
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˜̃ p

=
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t
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˜̃ p
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e
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t
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˜̃ e

+ l2I
˜̃

T
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6.4.5 Matrix/column notation
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˜̃ e

= A(1)δF̃
˜̃
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˜̃ p

=
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I
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6.4.6 Matrix/column notation

The components of the deviatoric, hydrostatic and hardening stress tensors are now stored
in columns.

δs
˜̃

d = GδB̃
˜̃

d

e
= GB(3)δF

˜̃
= S

d
δF
˜̃

δs
˜̃
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= H δB̃
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d
= H B(4)δF

˜̃
= HδF

˜̃

δσ
˜̃

= δs
˜̃

d + δs
˜̃

h + δw
˜̃

=
(

S
d
+ S

h
+ H

)

δF
˜̃

= SδF
˜̃

= S
c
δF
˜̃ t

with δF
˜̃ t

= F
t

(

L
˜̃u

)

t

= S
c
F

t

(

L
˜̃u

)

t

= M
(

L
˜̃u

)

t

6.5 Examples

6.5.1 Tensile test

A square plate or cylindrical bar is loaded uniaxially. Dimensions are listed in the table.

initial width w0 100 mm

initial height h0 100 mm

initial thickness d0 0.1 mm

initial radius r0

√

(10/π) mm

initial height h0 100 mm

Viscoelastic model in tensile test

The axial elongation is prescribed with a constant elongation rate. The axial stress and
force are calculated for polycarbonate (PC). Parameter values are listed in the table. The
deformation is assumed to be plane strain.



E 2305 MPa ν 0.37 -
H 29 MPa h 270 -

D∞ 19 - A0 9.7573E-27 s
∆H 2.9E5 J/mol µ 0.06984 -
τ0 0.72 MPa

elongation rate
∆̇l

h0
= 0.01 s−1
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Fig. 6.32 : Axial stress and force versus elongation

6.5.2 Shear test

The simple shear test is analyzed with one element, where the horizontal displacement in
the upper nodes is prescribed. Because there are no unknown degrees of freedom, the stiff-
ness matrix is not used. Only strains, stresses and reaction forces are calculated. Material
parameters for polycarbonate (PC) are used. The prescribed strain rate is constant.

initial width w0 100 mm
initial height h0 100 mm
initial thickness d0 0.1 mm

strain rate γ̇ =
u̇

h0
= 0.01 s−1
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Fig. 6.33 : Shear force versus shear strain for plane strain
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