
WR FOR AXI-SYMMETRIC DEFORMATION



1 Weighted residual formulation and FEM for axi-symmetric

deformation

The equilibrium equation is transformed in a weighted residual integral according to the
principle of weighted residuals. Using dV = rdφdr and the axi-symmetry condition, the
weighted residual integral becomes an integral in r only.
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Partial integration of the first term leads to the weak form of the weighted residual integral.
The right-hand side fe represents the contribution of the external loads.
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1.1 Linear elastic deformation

The material behavior is described by a linear relation between the stress and strain compo-
nents. The stiffness parameters Ap, Bp and Qp can be specified for the material symmetry
and for plane stress or plane strain.
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1.2 Finite element method for an axi-symmetric ring

As always, the finite element method relies on discretisaton of the material volume, implying
the weighted residual integral to be written as a sum of integrals over the indivudual elements.
Unknown displacments and weighting functions are then interpolated in each element between
nodal point values.



Discretisation

The disc is subdivided into ring elements, which have an inner radius R1 and and outer radius
R2. These elements are connected in the element nodal points – in fact concentric nodal rings
– and no gaps are allowed between them. The weighted residual integral can then be written
as a summation of integrals over the elements.

e1 2

Ri

Ro

R2

R1

Ri

Ro

u1 u2

ne
∑

e=1

∫ R2

R1

[

Apw,rur,rr +Qpw,rur +Qpwur,r +Bpw
1

r
ur

]

dr =

ne
∑

e=1

f e
e

Interpolation

In each element the radial displacement is written as a function of r. The coefficients are
expressed in the nodal radial displacements u1 and u2, which leads to interpolation functions
ψ1 and ψ2, associated with these nodes. They are a function of the radius r and are specified in
section 1.3. For element type 1, the interpolation of the radial displacement is in accordance
with the general solution for the homogeneous equilibrium equation. For element type 2,
interpolation is done linearly between the nodal displacements.

Following the Galerkin approach, the weighting function w(r) is interpolated the same
way as ur(r).

ur = ψ1u1 + ψ2u2

Galerkin → w = ψ1w1 + ψ2w2

The interpolation for displacement and weighting function is substituted in the weighted
residual integral. Derivatives of the interpolation functions w.r.t. r, are indicated as ψi,r.
This leads to the element stiffness matrix Ke and the column with external nodal forces f
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Integration

The element stiffness matrix has to be build by integration of functions over the element.
When the interpolation function is specified, this integration can be done analytically.
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External load

The external load is the addition of a volume load and the edge loads. The latter ones can be
applied directly in the edge nodes. The volume load, however, is the result of an integration
procedure over the volume of the disc.
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The contribution of the volume load can only be integrated after specification of this volume
load as a function of the radius r. It is assumed here that the volume load is a centrifugal
load, for which we have : qr = ρω2r.
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Assembling

Because the ring elements are placed sequentially from inside to outside in the disc, assembling
the global weighted residual equation is very straightforward. The requirement that it must
be satisfied for all nodal values w
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Boundary conditions

In the case of the axi-symmetric disc, we do not have to prevent rigid body motion, by
suppressing nodal displacements. Nodal displacement is always associated with deformation.

1.3 Ring elements

Two elelement types can be used, which have different interpolation for the radial displace-
ment ur.

In element type 1 the interpolation is based on the general solution of the homogeneous
differential equation for ur in the case of isotropic material behavior. In element type 2 the
interpolation is a linear function of the radial coordinate.

1.3.1 Element elt=1

For this element, the interpolation function is chosen in accordance with the general solution.
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Element stiffness matrix

Interpolation functions and their derivatives are substituted in the integrals of the element
stifness matrix and subsequently integrated. Mind that Ke
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Centrifugal load

For a centrifugal load, the nodal forces are calculated by integration over the element.
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1.3.2 Element elt=2

The second element based on a linear interpolation of the radial displacement.
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Element siffness matrix
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Centrifugal load

For a centrifugal load, the nodal forces are calculated by integration over the element.
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1.4 FE program femaxi

The Matlab program femaxi is used to analyze rings, which are subjected to various boundary
conditions.

1.4.1 Thick-walled pressurized cylinder

The first example is the same as we have seen before: a cylinder subjected to an internal
pressure. Parameter values are listed in the table below.

| isotropic | plane stress | pi = 100 MPa | pe = 0 MPa|
| a = 0.25 m | b = 0.5 m | h = 0.5 m |E = 250 GPa | ν = 0.33 |
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Fig. 1.1 : Displacement and stresses in a pressurized cylinder for plane stress.

1.4.2 Compound thick-walled pressurized cylinder

In this example, the disc is composed of two materials with different properties. The inner
part is isotropic. The outer part is made of orthotropic material with an increased modulus
in tangential direction, and reduced Poisson ratio’s. In this case element type 2 (linear
interpolation) has to be used, because type 1 interpolation field is not well suited for the
orthotropic material behavior.

| isotropic | plane stress | pi = 100 MPa | pe = 0 MPa |
| a1 = 0.25 m | a2 = 0.375 m |E = 250 GPa | ν = 0.33 |
| a2 = 0.375 m | b = 0.5 m |E1 = E GPa |E2 = 10E GPa |
| ν12 = ν/10 | ν32 = ν/10 |
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Fig. 1.2 : Displacement and stresses in a pressurized compound cylinder for plane stress

1.4.3 Rotating disc

The disc is rotated with an angular frequency ω = 6 cycles/sec.

| orthotropic | plane stress |ω = 6 c/s |
| a = 0.2 m | b = 0.5 m |E = 200 GPa | ν = 0.3 |Gr = 7500 kg/m3 |
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Fig. 1.3 : Stresses in a rotating disc for plane stress.
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