
NUMERICAL SOLUTION PROCEDURE



1 Weighted residual formulation

Unknown variables have to be solved from the combined set of equilibrium equations and
constitutive equations. Some of the equilibrium equations are partial differential equations.
For the general case of large deformations and nonlinear material behavior, the equations are
nonlinear. It is obvious that only for academic and very simple cases, analytic solutions exist.
For more practical problems, approximate solutions must be determined with a numerical
technique, of which the finite element method is widely used and will be considered here.

Application of the finite element method in continuum mechanics requires the reformu-
lation of the equilibrium equations. They are transformed from differential equations to an
integral equation, the so-called weighted residual integral.

First, we formulate the weighted residual integral for linear problems, so for small defor-
mation and linear elastic material behavior. The finite element method is then explained for
this case. Examples of plane stress, plane strain and axisymmetric problems will be calculated
with a Matlab program.

Subsequently, we formulate the weighted residual integral for nonlinear problems, where
the iterative solution procedure has to be applied. Finite element analyses can be done again
with a Matlab program.

1.1 Three-dimensional deformation

For an approximation, the equilibrium equation is not satisfied exactly in each material point.
The error can be ”smeared out” over the material volume, using a weighting function ~w(~x).

When the weighted residual integral is satisfied for each allowable weighting function ~w,
the equilibrium equation is satisfied in each point of the material.

equilibrium equation ~∇ ·σ
T + ρ~q = ~0 ∀ ~x ∈ V

approximation → residual ~∇ ·σ
T + ρ~q = ~∆(~x) 6= ~0 ∀ ~x ∈ V

weighted residual

∫

V

~w(~x) ·
~∆(~x) dV =

∫

V

~w ·

[

~∇ ·σ
T + ρ~q

]

dV

∫

V

~w ·

[

~∇ ·σ
T + ρ~q

]

dV = 0 ∀ ~w(~x) ↔ ~∇ · σ
T + ρ~q = ~0 ∀ ~x ∈ V

In the weighted residual integral, one term contains the divergence of the stress tensor. This
means that the integral can only be evaluated, when the derivatives of the stresses are con-
tinuous over the domain of integration. This requirement can be relaxed by applying partial
integration to the term with the stress divergence. The result is the so-called weak formula-
tion of the weighted residual integral.



Gauss theorem is used to transfer the volume integral with the term ~∇.( ) to a surface
integral. Also ~p = σ ·~n = ~n ·σ

c and σ = σ
c is used.

∫

V

~w ·
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~∇ ·σ
T + ρ~q

]

dV = 0

~∇ · (σT
· ~w) = (~∇~w)T : σ

T + ~w · (~∇ ·σ
T )
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→

∫
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~∇ · (σT
· ~w) − (~∇~w)T : σ

T + ~w · ρ~q
]

dV = 0 ∀ ~w

∫
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~∇ · (σT
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∫
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~n ·σ
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· ~w dA =
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~w · ~p dA
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→

∫

V

(~∇~w)T : σ dV =

∫

V

~w · ρ~q dV +

∫

A

~w · ~p dA ∀ ~w

∫

V

(~∇~w)T : σ dV = fe(~w) ∀ ~w

1.2 Linear elastic formulation

When deformation and rotations are small, the deformation is geometrically linear. The de-
formed state is almost equal to the undeformed state. This implies that integration can be
carried out over the undeformed volume V0 and the undeformed area A0.

The material behavior is described by Hooke’s law, which can be substituted in the
weighted residual integral, according to the displacement solution method.

The weighted residual integral is now completely expressed in the displacement ~u. Ap-
proximate solutions can be determined with the finite element method.

∫

V0

(~∇~w)T : σ dV0 =

∫

V0

~w · ρ~q dV0 +

∫

A0

~w · ~p dA0 = fe0(~w) ∀ ~w

σ = 4
C : ε = 4

C : 1

2

{

(~∇0~u) + (~∇0~u)T
}

= 4
C : (~∇0~u)

∫

V0

(~∇0 ~w)T : 4
C : (~∇0~u) dV0 =

∫

V0

~w · ρ~q dV0 +

∫

A0

~w · ~p dA0 = fe0(~w) ∀ ~w

This tensor relation can be written in matrix/column notation. We use the column notation
of the vector gradient as it was introduced in section ?? : L0w = (~∇0 ~w)c → L

˜̃0w
and L0u =

(~∇0~u)c → L
˜̃0u

where L
˜̃

is the column with the derivatives w.r.t. the coordinates.

∫

V0

(

L
˜̃0w

)T

t

C
(

L
˜̃0u

)

t

dV0 = fe0(w
˜
) ∀ w

˜


	Analytical solutions
	Cartesian, planar
	Tensile test
	Orthotropic plate

	Axi-symmetric, planar, ut=0
	Prescribed edge displacement
	Edge load
	Shrink-fit compound pressurized cylinder
	Circular hole in infinite medium
	Rotating disc
	Rotating disc with variable thickness
	Thermal load
	Large thin plate with central hole
	Optimized thickness distribution


	Radial temperature field
	Examples
	Governing equations and general solution
	Disc, edge displacement
	Disc/cylinder, edge load
	Rotating solid disc
	Rotating disc with central hole
	Rotating disc fixed on rigid axis
	Thermal load
	Solid disc with radial temperature gradient
	Disc on a rigid axis with radial temperature gradient


