
1 Total Lagrange formulation

When deformations are large – geometrically nonlinear –, the current volume of the material
is unknown, which means that the weighted residual integral can not be evaluated. Transfor-
mation of this integral is always possible. Besides the integral also the gradient operator must
be transformed. The configuration, which is the target of the transformation is the reference

configuration.
The first thing we can think of is a transformation to the undeformed configuration t0.

This transformation results in the Total Lagrange formulation. The second Piola-Kirchhoff
stress tensor is mostly used in this case to represent the stress state.

∫

V

(~∇~w)c : σ dV = fe(~w) ∀ ~w(~x)

transformation to undeformed configuration t0

~∇ = F
−c

·
~∇0 → (~∇~w)c = (~∇0 ~w)c ·F

−1

dV = det(F )dV0 = JdV0

weighted residual integral

∫

V0

(~∇0 ~w)c ·F
−1 : σJ dV0 = fe0(~w) ∀ ~w(~x)

P = JF
−1

· σ · F
−c















→

∫

V0

(~∇0 ~w)c : (P ·F
c) dV0 = fe0(~w) ∀ ~w(~x)

1.1 Iterative solution process

In the Total Lagrange formulation the weighted residual integral is transformed from the
current configuration Cc to the initial undeformed configuration C0. Unknown variables in
the integral are the total deformation tensor F and the 2nd-Piola-Kirchhoff stress tensor P .

To describe the essential steps of the iteration procedure, it is assumed that an approx-
imate state C∗

c is determined with values for F
∗ and P

∗. The unknown current values are
written as F = F

∗ + δF and P = P
∗ + δP , where δ(.) indicates the difference between C∗

c

and Cc. The iterative change of the deformation tensor δF can be expressed in the iterative
displacement δ~x = ~u.



∫

V0

(~∇0 ~w)c : (P · F
c) dV0 = fe0(~w) ∀ ~w(~x)

F = (~∇0~x)c = {~∇0(~x
∗ + δ~x)}c = (~∇0~x

∗)c + (~∇0δ~x)c = F
∗ + δF = F

∗ + L0u

P = P
∗ + δP































→

∫

V0

(~∇0 ~w)c : (P ∗ + δP ) · (F ∗ + L0u)c dV0 = fe0(~w) ∀ ~w(~x)

It is assumed that the iterative displacement, its gradient and the stress variation are very
small and then the weighted residual integral is linearized with respect to ~u. In analogy with
L0u, L0w = (~∇0 ~w)c is introduced.

∫

V0

L0w : (P ∗ + δP ) · (F ∗ + L0u)c dV0 = fe0(~w) ∀ ~w(~x)

∫

V0

L0w : (P ∗
·F

∗c + P
∗
·L

c

0u + δP ·F
∗c) dV0 = fe0(~w) ∀ ~w(~x)

∫

V0

L0w : (P ∗
·L

c

0u + δP ·F
∗c) dV0 =

fe0(~w) −

∫

V0

L0w : (P ∗
· F

∗c) dV0 = r∗ ∀ ~w(~x)

1.2 Material model

The right-hand side of the iterative equation represents the residual load. To calculate r∗

and the term with P
∗ in the left-hand integral, the stress P

∗(t) must be determined from the
constitutive equation. From the material model also a relation between δP and L0u must be
derived. The iterative change of the 2nd-Piola-Kirchhoff stress δP , must be expressed in the
iterative displacement ~u and substituted in the iterative weighted residual integral.

δP = 4
M : L0u →

∫

V0

L0w :
(

P
∗
·L

c

0u + ( 4
M : L0u) · F

∗c
)

dV0 =

fe0(~w) −

∫

V0

L0w : (P ∗
·F

∗c) dV0 ∀ ~w(~x)

∫

V0

[

L0w : (P ∗
·L

c

0u) + L0w : (F ∗
·

4
M

lrc
) : L

c

0u

]

dV0 =

fe0(~w) −

∫

V0

L0w : (P ∗
·F

∗c) dV0 ∀ ~w(~x)



1.3 Matrix/column notation

We will now express the vectors and tensors in their components w.r.t. a basis of a coordinate
system. A matrix-column notation is used, which is explained elsewhere. The asterisk ( )∗

indicating an approximate value is omitted.

∫

V0

[

(

L
˜̃ 0w

)T

t

P
(

L
˜̃ 0u

)

t

+
(

L
˜̃ 0w

)T

t

F
cr

M
0c

(

L
˜̃ 0u

)

t

]

dV0 =

fe0(w
˜
) −

∫

V0

(

L
˜̃ 0w

)T

t

F
cr

P
˜̃

dV0 = fe0(w
˜
) − fi0(w

˜
)

∫

V0

(

L
˜̃ 0w

)T

t

[

P + F
cr

M
0c

] (

L
˜̃ 0u

)

t

dV0 = fe0(w
˜
) − fi0(w

˜
)



2 Updated Lagrange formulation

In the Updated Lagrange formulation the reference configuration is chosen to be the start of
the current increment at tn.

∫

V

(~∇~w)c : σ dV = fe(~w) ∀ ~w(~x)

transformation to begin increment configuration tn

~∇ = F
−c

n ·
~∇n → (~∇~w)c = (~∇n ~w)c ·F

−1

n

dV = det(F n)dVn

weighted residual integral
∫

Vn

(~∇n ~w)c ·F
−1

n : σ det(F n) dVn = fen(~w) ∀ ~w(~x) →

∫

Vn

(~∇n ~w)c : (F−1

n ·σ) det(F n) dVn = fen(~w) ∀ ~w(~x)

2.1 Iterative solution process

To describe the essential steps of the iteration procedure, it is assumed that an approximate
state C∗

c is determined with values for F
∗

n, σ
∗ and the other variables. The unknown current

values are written as F n = (I +L
∗

u) · F
∗

n and σ = σ
∗+ δσ, where δ(.) indicates the difference

between C∗

c and Cc, and L
∗

u = (~∇∗~u)c, with ~u = δ~x
˜

the iterative displacement.

∫

Vn

(~∇n ~w)c : (F−1

n ·σ) det(F n) dVn = fen(~w) ∀ ~w(~x)

F n = (~∇n~x)c = {~∇n(~x∗ + δ~x)}c = (~∇n~x∗)c + (~∇nδ~x)c

= F
∗

n + δF n = F
∗

n + (~∇∗δ~x)c · (~∇n~x∗)c = F
∗

n + L
∗

u ·F
∗

n = (I + L
∗

u) · F
∗

n

σ = σ
∗ + δσ











































→

∫

Vn

(~∇n ~w)c :
[

(F ∗

n)−1
· (I + L

∗

u)−1
· (σ∗ + δσ) det{(I + L

∗

u) · F
∗

n}] dVn

= fen(~w) ∀ ~w(~x)

Assuming that the iterative displacement and its gradient are very small, the weighted residual
integral can be linearized with respect to ~u. In analogy with L

∗

u, L
∗

w = (~∇∗ ~w)c is introduced.



(I + L
∗

u)−1 ≈ I − L
∗

u

det{(I + L
∗

u) · F
∗

n} = det(I + L
∗

u) det(F ∗

n) ≈ tr(I + L
∗

u) det(F ∗

n) = (1 + I : L
∗

u) det(F ∗

n)

weighted residual integral
∫

Vn

(~∇n ~w)c :
[

(F ∗

n)−1
· (I − L

∗

u) · (σ∗ + δσ)(1 + I : L
∗

u) det(F ∗

n)
]

dVn

= fen(~w) ∀ ~w(~x)

further linearisation
∫

V ∗

[L∗

w : σ
∗
I : L

∗c

u + L
∗

w : δσ − L
∗

w : (σ∗c
·L

∗c

u )c] dV ∗ =

f∗

e (~w) −

∫

V ∗

L
∗

w : σ
∗ dV ∗ = r∗ ∀ ~w(~x)

2.2 Material model

The right-hand side of the iterative equation represents the residual load. To calculate r∗ and
two terms in the left-hand integral, the stress σ

∗(t) must be determined from the constitutive
equation.

The iterative change of the stress δσ, must be expressed in the iterative displacement ~u

and substituted in the iterative weighted residual integral.

δσ = 4
M : L

∗

u →

∫

V ∗

[

L
∗

w : σ
∗
I : L

∗c

u + L
∗

w : 4
M : L

∗

u − L
∗

w : (σ∗c
·L

∗c

u )c
]

dV ∗ =

f∗

e (~w) −

∫

V ∗

L
∗

w : σ
∗ dV ∗ ∀ ~w(~x)

2.3 Matrix/column notation

We will now express the vectors and tensors in their components w.r.t. a basis of a coordinate
system. A matrix-column notation is used, which is explained elsewhere. The asterisk ( )∗

indicating an approximate value is omitted.

∫

V ∗

[

(

L
˜̃w

)T

t

σ
˜̃
I
˜̃

T

(

L
˜̃u

)

t

+
(

L
˜̃w

)T

t

M
(

L
˜̃u

)

t

−
(

L
˜̃w

)T

t

σ
tr

(

L
˜̃u

)

t

]

dV ∗ =

fe(w
˜
) −

∫

V ∗

(

L
˜̃w

)T

t

σ
˜̃

dV ∗ = fe(w
˜
) − fi(w

˜
)

∫

V ∗

(

L
˜̃w

)T

t

[

σ
˜̃
I
˜̃

T − σ
tr

+ M
] (

L
˜̃u

)

t

dV ∗ = fe(w
˜
) − fi(w

˜
)

∫

V ∗

(

L
˜̃w

)T

t

[

Σ + M
]

(

L
˜̃u

)

t

dV ∗ = fe(w
˜
) − fi(w

˜
)
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