
GOVERNING EQUATIONS



1 Governing equations

In this chapter we will recall the equations, which have to be solved to determine the defor-
mation of a three-dimensional linear elastic material body under the influence of an external
load. The equations will be written in component notation w.r.t. a Cartesian and a cylindri-
cal vector base and simplified for plane strain, plane stress and axi-symmetry. The material
behavior is assumed to be isotropic.

1.1 Vector/tensor equations

The deformed (current) state is determined by 12 state variables : 3 displacement components
and 9 stress components. These unknown quantities must be solved from 12 equations : 6
equilibrium equations and 6 constitutive equations.

With proper boundary (and initial) conditions the equations can be solved, which, for
practical problems, must generally be done numerically. The compatibility equations are
generally satisfied for the chosen strain-displacement relation. In some solution approaches
they are used instead of the equilibrium equations.
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˜
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stress : σ = ~e
˜
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˜
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material law : σ = 4
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C
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1.2 Three-dimensional deformation

The vectors and tensors can be written in components with respect to a three-dimensional
vector basis. For various problems in mechanics, it will be suitable to choose either a Cartesian
coordinate system or a cylindrical coordinate system.

1.2.1 Cartesian components

The governing equations are written in components w.r.t. a Cartesian vector base {~ex, ~ey, ~ez}.
The stresses can be represented with a Cartesian stress cube.
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Fig. 1.1 : Cartesian coordinate system and stress cube
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εxx,yz + εyz,xx − εzx,xy − εxy,xz = 0 → cyc. 2x

ε
˜̃
T =

[

εxx εyy εzz εxy εyz εzx

]

σ
˜̃

T =
[

σxx σyy σzz σxy σyz σzx

]

σxx,x + σxy,y + σxz,z + ρqx = ρüx (σxy = σyx)
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1.2.2 Cylindrical components

The governing equations are written in components w.r.t. a cylindrical vector base {~er(θ), ~et(θ), ~ez},
with :

d~er

dθ
= ~et and

d~et

dθ
= −~er

The stress components can be represented with a cylindrical stress cube.
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Fig. 1.2 : Cylindrical coordinate system and stress cube
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1.3 Material law

When deformations are small, every material will show linear elastic behavior. For orthotropic
material there are 9 independent material constants. When there is more material symmetry,
this number decreases. Finally, isotropic material can be characterized with only two material
constants.

Be aware that we use now the strain components εij and not the shear components γij .
In an earlier chapter, the parameters for orthotropic, transversally isotropic and isotropic



material were rewritten in terms of engineering parameters: Young’s moduli and Poisson’s
ratio’s.
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1.4 Planar deformation

In many applications the loading and deformation is in one plane. The result is that the
material body is in a state of plane strain or plane stress. The governing equations can than
be simplified considerably.

1.4.1 Cartesian components

In a plane strain situation, deformation in one direction – here the z-direction – is suppressed.
In a plane stress situation, stresses on one plane – here the plane with normal in z-direction
– are zero.

Eliminating σzz for plane strain and εzz for plane stress leads to a simplified Hooke’s
law. Also the equilibrium equation in the z-direction is automatically satisfied and has become
obsolete.
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1.4.2 Cylindrical components

In a plane strain situation, deformation in one direction – here the z-direction – is suppressed.
In a plane stress situation, stresses on one plane – here the plane with normal in z-direction
– are zero.

Eliminating σzz for plane strain and εzz for plane stress leads to a simplified Hooke’s
law. Also the equilibrium equation in the z-direction is automatically satisfied and has become
obsolete.

plane strain : εzz = εrz = εtz = 0
plane stress : σzz = σrz = σtz = 0
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Axi-symmetric + ut = 0

When geometry and boundary conditions are such that we have
∂( )

∂θ
= ( )t = 0 the situation

is referred to as being axi-symmetric.
In many cases boundary conditions are such that there is no displacement of material

points in tangential direction (ut = 0). In that case we have εrt = 0 → σrt = 0
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1.5 Inconsistency of plane stress

Although for plane stress the out-of-plane shear stresses must be zero, they are not, when
calculated afterwards from the strains. This inconsistency is inherent to the plane stress
assumption. Deviations must be small to render the assumption of plane stress valid.

σxz = 2Kεxz = 2Kuz,x 6= 0

σyz = 2Kεyz = 2Kuz,y 6= 0
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