
FINITE ELEMENT METHOD



1 Finite element method

In Chapter ?? the weighted residual integral was derived.
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The unknown (iterative) dislacements in L
˜̃u

have to be determined such that this integral is
satisfied for all weighting functions in L

˜̃w
. Such a solution canot generally be determined ex-

actly and by analytical means. Instead we have to resort to numerical techniques to determine
an approximate solution. The finite element method is widely used for this task.

1.1 Discretisation

The integral over the body volume V is written as a sum of integrals over smaller volumes,
which collectively constitute the whole volume. Such a small volume V e is called an element.
Subdividing the volume implies that also the surface with area A is subdivided in element
surfaces (faces) with area Ae.

Fig. 1.1 : Finite element discretisation
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Isoparametric elements

Each point of a three-dimensional element can be identified with three local coordinates
{ξ1, ξ2, ξ3}. In two dimensions we need two and in one dimension only one local coordinate.

The real geometry of the element can be considered to be the result of a deformation
from the original cubic, square or line element with (side) length 2. The deformation can
be described with a deformation matrix, which is called the Jacobian matrix J . The de-
terminant of this matrix relates two infinitesimal volumes, areas or lengths of both element
representations.
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Fig. 1.2 : Isoparametric elements

isoparametric (local) coordinates (ξ1, ξ2, ξ3) ; − 1 ≤ ξi ≤ 1 i = 1, 2, 3

Jacobian matrix J =
(

∇
˜
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˜

T
)T

; dV e = det(J) dξ1dξ2dξ3

1.2 Interpolation

The value of the unknown quantity – here the displacement vector ~u or the iterative displace-
ment vector δ~u – in an arbitrary point of the element, can be interpolated between the values
of that quantity in certain fixed points of the element : the element nodes. Interpolation

functions N are a function of the isoparametric coordinates.
The components of the vector (δ)~u are stored in a column (δ)u

˜
. The nodal (iterative)

displacement components are stored in the column (δ)u
˜

e. The position ~x of a point within the
element is interpolated between the nodal point positions, the components of which are stored
in the column x

˜
e. Generally, the interpolations for position and displacement are chosen to

be the same.
Besides (δ)~u and ~x, the weighting function ~w also needs to be interpolated between

nodal values. When this interpolation is the same as that for the displacement, the so-called
Galerkin procedure is followed, which is generally the case for simple elements, considered
here.

We consider the vector function ~a to be interpolated, where nep is the number of element
nodes. Components ai of ~a w.r.t. a global vector base, can then also be interpolated.
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The gradient of the vector function ~a also has to be elaborated. The gradient is referred
to as the second-order tensor L

c, which can be written in components w.r.t. a vector basis.
The components are stored in a column L

˜̃
. This column can be written as the product of

the so-called B-matrix, which contains the derivatives of the interpolation functions, and the
column with nodal components of ~a.
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1.3 Integration

Interpolations for both the (iterative) displacement and the weighting function and their
respective derivatives are substituted in the weighted residual integrals of each element.

Calculating the element contributions implies the evaluation of an integral over the
element volume V e and the element surface Ae. This integration is done numerically, using
a fixed set of nip Gauss-points, which have s specific location in the element. The value of
the integrand is calculated in each Gauss-point and multiplied with a Gauss-point-specific
weighting factor cip and added.

Resulting element quantities are the element stiffness matrix Ke, the element external
force column f

˜

e

e
and the element internal force column f
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1.4 Assemblation

The weighted residual contribution of all elements have to be collected into the total weighted
residual integral. This means that all elements are connected or assembled. This assembling is
an administrative procedure. All the element matrices and columns are placed at appropriate
locations into the structural or global stiffness matrix K and the load column f

˜
e
.

Because the resulting equation has to be satisfied for all w
˜
, the nodal displacements u

˜have to satisfy a set of equations.
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1.5 Solution

The initial governing equations were differential equations, which obviously need boundary
conditions to arrive at a unique solution. The boundary conditions are prescribed displace-
ments or forces in certain material points. After finite element discretisation, displacements
and forces can be applied in nodal points.

The set of nodal equations Kδu
˜

= r
˜

cannot be solved yet, because the structural stiffness
matrix K is singular and cannot be inverted.
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→ K = singular → det K = 0

When enough boundary conditions have been applied to prevent the rigid body motion of the
material body, the equations are solvable.

δu
˜

= K−1 r
˜



1.6 Program structure

A finite element program starts with reading data from an input file and initialization of
variables and databases.

The loading is prescribed as a function of the (fictitious) time in an incremental loop.
In each increment the system of nonlinear equilibrium equations is solved iteratively.

In each iteration loop the system of equations is build. In a loop over all elements, the
stresses are calculated and the material stiffness is updated. The element internal nodal force
column and the element stiffness matrix are assembled into the global column and matrix.

Numerical integration over the element volume (area) implies that a loop over integra-
tion points is entered. In each integration point the integrand is calculated and the result is
multiplied by a weighting factor and added to the existing element value.

After taking tyings and boundary conditions into account, the unknown nodal displace-
ments and reaction forces are calculated.

When the convergence criterion is not reached, a new iteration step is performed. After
convergence output data are stored and the next incremental step is carried out.

read input data from input file

calculate additional variables from input data

initialize values and arrays

while load increments to be done

for all elements

for all integration points

calculate contribution to initial element stiffness matrix

end integration point loop

assemble global stiffness matrix

end element loop

determine external incremental load from input

while non-converged iteration step

take tyings into account

take boundary conditions into account

calculate iterative nodal displacements

calculate total deformation

for all elements

for all integration points

calculate stresses from material behavior

calculate material stiffness from material behavior

calculate contribution to element internal nodal forces



calculate contribution to element stiffness matrix

end ntegration point loop

assemble global stiffness matrix

assemble global internal load column

end element loop

calculate residual load column

calculate convergence norm

end iteration step

store data for post-processing

end load increment

A more detailed description of the formulation of axi-symmetric ring elements and planar
elements can be found in the appendices ?? ??, ??, ??. In the next chapter, some results are
presented for linear elastic problems.



1.7 FE program plax

The Matlab program plax is used to model and analyze planar and axisymmetrc problems.
Large deformations and rotations are allowed. Various nonlinear and time-dependent material
models are implemented .

Rigid rotation

When a material body is subjected to a rigid rotation, no stresses must be generated in the
material. The material model must be such that this requirement is satisfied.

In this example we rotate one element over 720o by prescribing all nodal point displace-
ments. A non-suitable material law, a linear relation between the Cauchy stress tensor σ

and the infinitesimal strain tensor ε, will result in high reaction forces in the nodes (figure 1
below). A correctly formulated material law, such as a linear relation between the Cauvhy
stress tensor σ and the tensor 1

2
(F ·F

c−I), will result in zero reaction forces (figure 2 below).
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Fig. 1.3 : Rigid rotation for non-objective elastic material model.
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Fig. 1.4 : Rigid rotation for objective elastic material model.
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