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1 Kinematics

The motion and deformation of a three-dimensional continuum is studied in continuum me-
chanics. A continuum is an ideal material body, where the neighborhood of a material point
is assumed to be dense and fully occupied with other material points. The real microstructure
of the material (molecules, crystals, particles, ...) is not considered. The deformation is also
continuous, which implies that the neighborhood of a material point always consists of the
same collection of material points.

Kinematics describes the transformation of a material body from its undeformed to its
deformed state without paying attention to the cause of deformation. In the mathematical
formulation of kinematics a Lagrangian or an Eulerian approach can be chosen. (It is also
possible to follow a so-called Arbitrary-Lagrange-Euler approach.)

The undeformed state is indicated as the state at time ¢ty and the deformed state as the
state at the current time ¢. When the deformation process is time- or rate-independent, the
time variable must be considered to be a fictitious time, only used to indicate subsequent
moments in the deformation process.

O

Fig. 1.1 : Deformation of continuum

1.1 Identification of points

Describing the deformation of a material body cannot be done without a proper identification
of the individual material points.



1.1.1 Material coordinates

Each point of the material can be identified by or labeled with material coordinates. In a
three-dimensional space three coordinates {1, &2,&3} are needed and sufficient to identify a
point uniquely. The material coordinates of a material point do never change. They can be
stored in a column § §T = [ & & &3 ] .
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Fig. 1.2 : Material coordinates

1.1.2 Position vectors

A point of the material can also be identified with its position in space. Two position vectors
can be chosen for this purpose : the position vector in the undeformed state, T, or the posi-
tion vector in the current, deformed state, . Both position vectors can be considered to be
a function of the material coordinates &.

Each point is always identified with one position vector. One spatial position is always
occupied by one material point. For a continuum the position vector is a continuous differ-
entiable function.

Using a vector base {€7, €5, €3}, components of the position vectors can be determined
and stored in columns.

r

Fig. 1.3 : Position vector

undeformed configuration (tg) 0= X(&,to) = xo1€1 + T02€2 + T03€3

deformed configuration () = )Z(g, t) = x1€] + w2y + X363



1.1.3 Euler-Lagrange

When an Fulerian formulation is used, all variables are determined in material points which
are identified in the deformed state with their current position vector Z. When a Lagrangian
formulation is used to describe state transformation, all variables are determined in material
points which are identified in the undeformed state with their initial position vector ry. For
a scalar quantity a, this can be formally written with a function Ag or Ay, respectively.

The difference da of a scalar quantity a in two adjacent points P and () can be calculated
in both the Eulerian and the Lagrangian framework. This leads to the definition of two
gradient operators, V and @0, respectively.

For a vectorial quantlty a, the spatial difference da in two adjacent points, can also be
calculated, using either Vo or V. For the position vectors, the gradients result in the unity
tensor I.

Euler : "observer” is fixed in space

a=Ag(Z,t)

da = ag — ap = Ap(Z + di,t) — Ap(Z,t) = di- (Va) t
- .9 .09 0
v_elﬁ—a:l+628—a:2+e?’8—:zg

Lagrange : ”"observer” follows the material

a = .AL(fo, t)
da = ag — ap = Ar(To + dio,t) — Ar(To,t) = dig - (Voa) .
- 0 0 0
Vo - .
89601 e 002 e 003
position vectors
Vi=I ; VoZo = I

1.2 Time derivatives

A time derivative of a variable expresses the change of its value in time. This change can
be measured in one and the same material point or in one and the same point in space. In
the first case, the observer of the change follows the material, and, in the second case, he is
located in a fixed spatial position.

This difference of observer position leads to two different time derivatives, the material
time derivative and the spatial time derivative. Using a material time derivative is associated
with the Lagrangian formulation, while in the Eulerian formulation the spatial time derivative
is generally used. Below, we consider the time derivatives of a scalar vatiable a.

ial ti .. Pe o m 1A A Az
material time derivative Di a A { (xo,t‘i' t) (O,t)}

velocity of a material point 7 = #(i) = &



da 1
ol ti o v, L = A — A(z
spatial time derivative 5= Al 7 {A(Z,t + At) — A(Z,t)}
velocity field U= U(Z,t)

A relation between the material and the spatial time derivative can be derived. The material
velocity enters this relation and represents the velocity of the observer. The material time
derivative can be written as the sum of the spatial time derivative and the convective time

derivative.
%j - lm Ait [(A(Zo,t + At) — Ao, 1)}
= Altigo i {A(Z +dz, t + At) — A(Z,t)}
= Jim_ Ait [AF +dT,t+ At) — ATt + At) + A(F,t + At) — A7, 1)}
- Jim_ i a7+ (Fa)| |+ A1+ 40 - A@,0)}
= Am, {i_i (Vo) dim ﬁ {A@ 1+ A1) - AZ 1)}
= 7+ (Va) + oa

ot
= (convective time derivative) + (spatial time derivative)

= (material time derivative)

1.3 Deformation

Upon deformation, a material point changes position from #y to #. This is denoted with a
displacement vector . In three-dimensional space this vector has three components : uq, uso
and us.

The deformation of the material can be described by the displacement vector of all
the material points. This, however, is not a feasible procedure. Instead, we consider the
deformation of an infinitesimal material volume in each point, which can be described with a
deformation tensor.



Fig. 1.4 : Deformation of a continuum

—

U =2 — 2o =ui€] + u2€s + uzes

1.3.1 Deformation tensor

To introduce the deformation tensor, we first consider the deformation of an infinitesimal
material line element, between two adjacent material points. The vector between these points
in the undeformed state is dZy. Deformation results in a transformation of this vector to di,
which can be denoted with a tensor, the deformation tensor F. Using the gradient operator
with respect to the undeformed state, the deformation tensor can be written as a gradient,
which explains its much used name : deformation gradient tensor.

In the undeformed configuration, an infinitesimal material volume is uniquely defined by
three material line elements or material vectors dZo1, dZpe and dZpz. Using the deformation
tensor F', these vectors are transformed to the deformed state to become dy, d¥y and d¥s.
These vectors span the deformed volume element, containing the same material points as in
the initial volume element. It is thus obvious that F' describes the transformation of the
material.
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Fig. 1.5 : Deformation tensor

diy = F -dZy ) diy = F - d¥po ; d¥s = F - dios

Volume change

The three vectors which span the material element, can be combined in a triple product. The
resulting scalar value is positive when the vectors are right-handed and represents the volume
of the material element. In the undeformed state this volume is dV{, and after deformation the
volume is dV. Using the deformation tensor F' and the definition of the determinant (third
invariant) of a second-order tensor, the relation between dV and dV{) can be derived.

to F t
dﬂ?()g —  Ta

dion ﬁ' da?oz A4 A |
<[> v‘

Fig. 1.6 : Volume change

dV = d¥; * d¥s - dT3
= (F-dZy) * (F-dZyg) - (F-dZos)
= det(F") (dZy; * dZos - dTp3)
= det(F) dVy
= JdVy



Area change

The vector product of two vectors along two material line elements represents a vector, the
length of which equals the area of the parallelogram spanned by the vectors. Using the
deformation tensor F', the change of area during deformation can be calculated.

dAT = diy * dZy = (F - dZo1) * (F - dZp2)
dA7 - (F -dZoz) = (F - dZo) x (F - dZoz) - (F - dTo3)
= det(F)(dZgy * dZog) - dZos ¥V dips —
dA7i - F = det(F)(dZo; * dZo2)
dA 7 = det(F)(dZo; * dEgp) - F~*
= det(F)dAg - F~!
= dAgiig- (F~'det(F))

Inverse deformation

The determinant of the deformation tensor, being the quotient of two volumes, is always a
positive number. This implies that the deformation tensor is regular and that the inverse
F~! exists. It represents the transformation of the deformed state to the undeformed state.
The gradient operators V and Vj are related by the (inverse) deformation tensor.

J = j—“// =det(F) >0 — F regular — dig=F"'.d¥
0

relation between gradient operators

I:F‘T-FT—><§J?):F_T-(§OJ?) ~ v=FT.¥,

Homogeneous deformation

The deformation tensor describes the deformation of an infinitesimal material volume, initially
located at position Zy. The deformation tensor is generally a function of the position Zy.
When F' is not a function of position Z(, the deformation is referred to as being homogeneous.
In that case, each infinitesimal material volume shows the same deformation. The current
position vector Z can be related to the initial position vector £y and an unknown rigid body
translation .
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Fig. 1.7 : Homogeneous deformation
VoZ = F° = uniform tensor — #= (Zp - F°) +t=F-%y+1

1.3.2 Elongation and shear

During deformation a material line element dZ is transformed to the line element dZ. The
elongation factor or stretch ratio A of the line element, is defined as the ratio of its length
after and before deformation. The elongation factor can be expressed in F' and ép, the unity
direction vector of d¥y. It follows that the elongation is calculated from the product F°- F,
which is known as the right Cauchy-Green stretch tensor C.

Fig. 1.8 : FElongation of material line element

dZ1-d%;  dTo - FT-F-dfp _ ||dio])?

= = e - FL.F.¢
doy - dZor doy - dZo ||dZoq | (¢ )

. T . o o
= ep+F" -F-ep =ep1-C-eép

We consider two material vectors in the undeformed state, dzy; and dZpe, which are perpen-
dicular. The shear deformation ~ is defined as the cosine of #, the angle between the two
material vectors in the deformed state. The shear deformation can be expressed in F' and €y
and €po, the unit direction vectors of dry; and dige. Again the shear is calculated from the
right Cauchy-Green stretch tensor C' = F¢- F'.



Fig. 1.9 : Shear of two material line elements

L ) d7y - ds dZg, + FT - F - dZgy
v(Eo1,€02) = sin (% —0) =cos(f) = ———r— = i
-9 A A
[|dZo1 ||lldZoz|(€or - T - F - o) _ €1 - F* - F - épg
A(€o1)||dZo1||A(€o2)||dZoz]| A(€o1)A(€o2)
_ €o1 + C - €p2
A1) ME02)

1.3.3 Principal directions of deformation

In each point P there is exactly one orthogonal material volume, which will not show any
shear during deformation from ¢y to t. Rigid rotation may occur, although this is not shown
in the figure.

The directions {1,2,3} of the sides of the initial orthogonal volume are called principal
directions of deformation and associated with them are the three principal elongation factors
A1, Ao and A3. For this material volume the three principal elongation factors characterize
the deformation uniquely. Be aware of the fact that the principal directions change when the
deformation proceeds. They are a function of the time .

The relative volume change J is the product of the three principal elongation factors.
For incompressible material there is no volume change, so the above product will have value
one.

to
t b
2 t d82 1
y b2 e
/1 ng
dso3 dsy
z O =z P P
dSOl 3 /
3 /

Fig. 1.10 : Deformation of material cube with sides in principal directions



dsy dss dss

1 dsor ; 2 502 ; 3 ds0s ;0 Y12 = 723 = 731
dVv dsi1dsad

J = S

AV~ dsordsozdsos

1.3.4 Strains

The elongation of a material line element is completely described by the stretch ratio A. When
there is no deformation, we have A = 1. It is often convenient to describe the elongation with a
so-called elongational strain, which is zero when there is no deformation. A strain ¢ is defined
as a function of A\, which has to satisfy certain requirements. Much used strain definitions
are the linear, the logarithmic, the Green-Lagrange and the Euler-Almansi strain. One of the
requirements of a strain definition is that it must linearize toward the linear strain, which is
illustrated in the figure below.

4
1 €
linear g=A—1 S
3f - - £In
. . sy
logarithmic Ein = In(N) | g
7896
_ 1732 — 1l I
Green-Lagrange eg = 5(A\" — 1) 2 1 T
I =
. 1 1 w of
Euler-Almansi  ecq = 5 (1 — v _
_l, 7
-2t //
1
-3l i i 1 | |
0 0.5 1 15 2 25 3

A

Fig. 1.11 : Strain definitions

1.3.5 Strain tensor

The Green-Lagrange strain of a line element with a known direction €y in the undeformed
state, can be calculated straightforwardly from the so-called Green-Lagrange strain tensor FE.
Also the shear v can be expressed in this tensor. For other strain definitions, different strain
tensors are used, which are not descussed here.

HN@m) -1} =én- {3 (F"-F—1)} -én =én-E-én
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o) = 2 F oD [ 2 ] g
01, €0 Mor)Mo2) Mo M@0) | ’

E=L(F'.F 1) E:%[{I—I—(ﬁoﬁ)}-{I—I—(@oﬁ)T}_I}

— (%o)" =1+ (Vor)" =4 |(Foi)" + (o) + (Fod) - (Fod) |

[\

1.3.6 Right Cauchy-Green deformation tensor

The general transformation of a material line element from the undeformed to the deformed
state is uniquely described by the deformation (gradient) tensor F'. The true deformation
consists of elongation of material line elements and mutual rotation of line elements, which is
also referred to as shear.

The true deformation, represented by the expressions for A\ and ~, is described by the
product F¢- F', which is called the right Cauchy-Green deformation tensor C. This important
tensor has two properties, which are easily recognized : 1) it is symmetric and 2) it is positive
definite.

These properties imply that C' has real-valued eigenvectors and eigenvalues, of which
the latter must be positive. The eigenvectors are mutually perpendicular or can be chosen to
be so. Taking them as a vector basis, the tensor C' can be written in spectral form.

1. symmetric cc=C
2. positive definite

i-C-d=a-F°-F-d=(F-a):-(F-a)
F is regular — F.i#0 if a#0 —
a-C-a>0 YV a#0

3. eigenvalues and eigenvectors real
eigenvalues positive —  spectral representation
eigenvectors L (choice)

C = pmymiy + pomaoms + (31migns

Eigenvectors and eigenvalues

The physical meaning of the eigenvalues and eigenvectors of C' becomes clear if we consider
again the expressions for stretch and shear, but now using the spectral representation of
C'. For these expressions to have a physical relevant meaning, the eigenvectors of C' must
characterize a material direction in the undeformed state. They are denoted as 7ig;,7 = 1,2, 3.

Two eigenvectors of C' are mutually perpendicular and represent the direction of two
material elements in the undeformed state. The shear deformation between these two material
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directions is zero. i.e. the material line elements remain perpendicular during deformation.
They are called principal directions of deformation or principal strain directions.

The eigenvalues of C appear to be the squared stretch ratios of the material line elements
oriented in the direction of the eigenvectors of C. They are called the principal elongation
factors. The right Cauchy-Green deformation tensor is fully defined in the undeformed state.
It is therefore characterized as a Lagrangian tensor.

C = pimama + ooy + [3msams
C = no1mo1 + pafiozfioz + (13703703

Tig1 + C « 12

=0
Vo1 - C - Tlo1v/Toz - C - Tipe

A1io1) = Vo1 - C ot =/ 5 (o1, Mo2) =

2, o 2, o 2, o
C = N fip1701 + A3 Tipatio2 + A3 Tip37ios

1.3.7 Right stretch tensor

Based on the right Cauchy-Green deformation tensor, a new tensor, the right stretch tensor
U, is simply defined as the square root of C. It is obvious that U, like C, is symmetric,
positive definite and regular.

U = VC = Miip17io1 + Aaflo2iio2 + A37i03703

symmetric : Uuc=U
2.  positive definite a-U-da>0 vV o a
1 1 1
3. regular : U'=_— 7017001 + ~— To2To + ~— 703703
M Ao )\3

4. det(C) =det(U -U) = det(F°- F) = det*(F) —
det(U) = Moz = det(F) = J

The stretch tensor U can be used to transform perpendicular material line elements dZy1, dZgo
and dpz. The resulting material vectors dzf,, di(, and dijz, will have changed in length and
will also be no longer perpendicular, when the original line elements do not coincide with the
principal deformation directions. It can be concluded that U describes the real deformation,
so elongation and shear.



-

R

Fig. 1.12 : Transformation by U

d.fnokl =U-. df()l 5 d.fnoa =U-. dfog N df33 =U-. dfog

Total transformation

The total transformation from the undeformed to the deformed state, is not described by U

but by F'. It seems that there must be another part of the total transformation, which is not
described by U. This missing link between U and F is a tensor R = F-U"!.

-

R

Fig. 1.13 : Total transformation

12
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dzy, =U-d¥y — dig =U"'-dzy, B
d7) = F - diy

d‘fl:FU_ldek)lszfgl -~ R=F.U!

1.3.8 Rotation tensor

The tensor R = F-U ! has some properties which renders it to have a physical meaning :
it is a rotation temsor and describes the rigid body rotation of the material volume element
during the transformation from the undeformed to the current, deformed state.

R=F.U!
1.
RE-R=UC°.F¢.F.U!
U c.Uu-v-vlt=vuc.uc-u-u!
=1 — R is orthogonal
2.

det(R) = det(F-U ")
= det(U) det(U™") = det(U -U )

=det(I) =1 — R is rotation tensor

1.3.9 Right polar decomposition

The total transformation described by F'is decomposed into a true deformation, described
by U and a rigid body rotation, described by R. This decomposition is denoted as the right
polar decomposition of the deformation tensor. This decomposition is unique and both U and
R can be determined from F'.

1.3.10 Strain tensors

The stretch ratio of a material line element in the direction €y could be determined using the
right Cauchy-Green deformation tensor C. For a strain definition ¢ = f(\) we would like to
have a strain tensor €, such that the strain of a material line element in the direction &y can
be calculated according to : £(€y) = €y - € + €.

stretch ratio Aep) =ve-C-é
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strain tensor €
strain measure e(éy) =ép-e-éy = f(A(€))
shear measure (€01, €p2) = €01+ € * €p2

Linear strain tensor

The linear strain tensor £ is defined as &€ = U — I. The linear strain of a material line
element in the direction €y cannot be calculated with this tensor. This is only possible for a
line element in a principal deformation direction 7ig;.

E=U-1
éo-E-ep=¢y-U-éy—éy-I-ég=¢éy-U-éyp—1# Nep) —1
ﬁolgﬁozzﬁolUﬁol—lz)\(ﬁol)—lz)\l—l

Logarithmic strain tensor

The logarithmic strain tensor A is defined as A = In(U). The logarithmic strain of a material
line element in the direction €y cannot be calculated with this tensor. This is only possible
for a line element in a principal deformation direction 7iy;.

A=InU)
éb -A- éb = 50 . ln(U) . éb 7& ln(A(éb))

Green-Lagrange strain tensor

The Green-Lagrange strain tensor E is defined as E = 3 (C — I). For a material line element
in the initial direction €y the Green-Lagrange strain can be calculated using the Green-
Lagrange strain tensor.

E=%(C-1I)

E-éy=1(6-C-é—1) =13 (N()—1)

®
S
D=
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Infinitesimal linear strain tensor

The infinitesimal strain tensor € is the linearized fraction of the Green-Lagrange strain tensor
E. For infinitesimal displacements, the first partial derivatives of the displacement compo-
nents are so small that all involved squares and products are negligible with respect to the
linear terms. The non-linear terms in E can than be neglected.

For infinitesimal displacements the change in position vector of a material point is not
relevant. This means that the difference between gradient operators vanishes.

E=L(F.F-T)=1 {(%ﬁ) + (Void)® + (Vo) - (%ﬁ)C}
linearisation @ — infinitesimal strain tensor

e = 1 {(Voi) + (Voi)*} = § (F + F*) - 1 = } {(Va) + (Vi)

1.4 Deformation rate

The rate of deformation of a material line element is the material time derivative — we follow
the same line element in time — of a material vector d¥ in the current state. This derivative
can be related to dZ with a tensor L, the velocity gradient tensor. This tensor is decomposed
into a symmetric and a skewsymmetric part, the deformation rate tensor D and the spin
tensor {2, respectively.

di = F-dZy = F-F~'.dZ = L-dZ = (V0)°-dZ
=YL+ L%}-di+ ${L - L}-d7
= D-di + 2-d7

1.4.1 Spin tensor

The spin tensor §2 describes only rotation rate of the material line element. This follows
directly from the fact that the spin tensor is skewsymmetric and has a unique associated
axial vector &.

2=y {F-F - @ Fy} = 1{(0) - ()}

2 = skewsymmetric — §2.d¥ = J *x d¥ = velocity | dF = rotation rate
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&l

Fig. 1.14 : Rotation rate of material line element

The proof that a skewsymmetric tensor has an associated axial vector is repeated here.

[-027=0-2G=-7-927 —
7-02-7=0 —

2-G=p -

7gp=0 —

qlp —

4 & zdd p=dxq —

The axial vector associated with a skewsymmetric tensor is unique. Its components can be
determined and expressed in the components of the skewsymmetric tensor.

N-g=wxq V ¢
21 $ho (hs q1 q1 + 21292 + $21393
R-G=¢" | Qo1 Dog o3 g2 | =& | Qo1q1 + Po2qe + Po3q3
231 (230 (233 q3 231q1 + (23292 + (23303

Gxq = (w1€1 + w2eh + w3€3) * (q1€1 + q2€2 + q3€3)
= wi1q2(€3) + wigs(— €2) + waqi(— €3) + waq3(€1) + w3q1(€2) + waga(—€1)

W2(g3 — W3(q2
= [e1 €2 €3] | waq1 —wigs
wi1q2 — w241
0 — w3 w2
NR-F=dxq i — = w3 0 —uw

— W2 w1 0
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1.4.2 Deformation rate tensor

The deformation rate tensor does not what its name suggests. For a random material vector
dZ the product D - dZ is a vector which is not along dZ. The deformation rate tensor describes
the rate of elongation but also partly the rate of rotation of dZ. Only for material line elements
in the direction of one if its eigenvectors the tensor D describes purely elongation rate.

D=1 {F-F‘1 + (F‘F_l)c} = {(WYJF (W)}

D =D° — D =i+ v + 131313

1.: vector dZ along 771 : d¥ = dxymy
D .d7 = de’lD ‘771 = d{L’ll/lﬁl = I/lda_f
2.: random vector di = dx771 + dxoifs + dxgis

D .d¥ = dIL’ll/lﬁl + da}QVgﬁg + d:L’ngﬁg

2.dv
dx

141 dﬂ?

Fig. 1.15 : Deformation rate of material line element

1.4.3 Elongation rate

The elongation rate of a material line element can be expressed in the time derivative of the
elongation factor A.

D D
2__’c c_’ _— 2 = — _’c c_»
N=e6-Cea — 5 N)=r5(0Ce) —
\ — D > o D c —
2)\)\—60'&(0)'60—60'&(.’7 F) €0
—é&-{F' -F+F°.F}.¢

— & -F-{F . F' +F.-F'}.F.¢g
(F-&)-{(F-F ')+ F-F'}.(F-&)
=(\e)-(2D)-(xe) —

l-e.D.¢
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1.4.4 Volume change rate

The rate of change of the material volume, the material time derivative of the volume change
factor J, is the product of J itself and the trace of the deformation rate tensor D. To derive
this relation, we consider a material volume element in the undeformed and the deformed
state. In the undeformed state the sides of the element coincide with the pricipal deformation
directions {T_i()l, ﬁOQ, ﬁog}.

to t

Fig. 1.16 : Volume change rate of material cube

tr(D) = 7y D+ iy + g+ D+ iy + 3 - D+ i3
M X A3 D D
= =4+ =4+ 2=—A{In(\ In(\ In(\ = —{In(A1 A2\
)\1+)\2+)\3 Dt{n( 1) +1In(A2) +1In(A3)} Dt{n(123)}

D D D J
= Di [In{det(U)}] = Di [In{det(F)}] = E{IH(J)} =5 -

J = Jt(D) = J (6-6)

1.4.5 Area change rate

The rate of change of a material area dA with unit normal vector 77 can also be expressed in
the velocity gradient tensor L.

— (dA#) = % {det(F)dAorio- F~'}

D -
= o {det(F)} dAgiio - F~" + det(F)dAgiio - F !

= JdAgiy- F~ — JdAgiig- F~1- L

= tr(L)JdApiig- F~' — JdAgiig- F~' - L
= Jtr(L)F~¢-dAgiig — J L - F~¢- dAgfig
= J (tr(L)I — LF) - F~¢-dAgfip

= (tr(L)I — L) dAR
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1.5 Linear deformation

In linear elasticity theory deformations are very small. All kind of relations from general
continuum mechanics theory may be linearized, resulting for instance in the linear strain
tensor €, which is then fully expressed in the gradient of the displacement. The deformations
are in fact so small that the geometry of the material body in the deformed state approximately
equals that of the undeformed state.

Fig. 1.17 : Small deformation

Bol RW)T + (Vo) + (Voi) - (Wﬂ

_ T
small deformation — (Voﬁ) =F-1=0

[(ﬁoﬁ)T n (ﬁoﬁ)] ~ L [(%)T + (W)] —¢  symm!

Not only straining and shearing must be small to allow the use of linear strains, also the rigid
body rotation must be small. This is immediately clear, when we consider the rigid rotation of
a material line element P around the fixed point P. The z- and y-displacement of point @,
u and v respectively, are expressed in the rotation angle ¢ and the length of the line element
dxg. The nonlinear Green-Lagrange strain is always zero. The linear strain, however, is only

FE ~

D=

zero for very small rotations.

¢
P_ . Q
i) d:L‘()

Fig. 1.18 : Rigid rotation of a line element
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u=ug = —[dzg — dzxgcos(¢)] = [cos(p) — 1]dzg

v =vg = [sin(¢)]dzo
ou ov

g cos(¢) =1 e sin(¢) —
_Ou | (0Ou 0w\ B
Egl—a—xo-i-g(a—m()) +§<8—x0> =0

ou
= — = — I
£l D0 cos(p) —1#0 !

Elongational, shear and volume strain

For small deformations and rotations the elongational and shear strain can be linearized and
expressed in the linear strain tensor €. The volume change ratio J can be expressed in linear
strain components and also linearized.

elong. strain % ()\2(501) — 1) = én-E-en
!
)\(501) -1 = 501 cE - 501
. L. . i 2 - -
shear strain ~v(€p1, €p2) = sin (5 — 0) = m €o1+ E - epo
!
%—9 = 2501'6'502
dv
volume change J = o Ao = (e1+ 1) (g2 +1)(e2 + 1)
!
J = €1+52+€3+1:tr(5)—|—1
volume strain J—1 = tr(e)

1.5.1 Linear strain matrix

With respect to an orthogonal basis, the linear strain tensor can be written in components,
resulting in the linear strain matrix.

Because the linear strain tensor is symmetric, it has three real-valued eigenvalues {1, 2,3}
and associated eigenvectors {7, M2, 7i3}. The eigenvectors are normalized to have unit length
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and they are mutually perpendicular, so they constitute an orthonormal vector base. The
strain matrix w.r.t. this vector base is diagonal.

The eigenvalues are referred to as the principal strains and the eigenvectors as the prin-
cipal strain directions. They are equivalent to the principal directions of deformatieon. Line
elements along these directions in the undeformed state ty do not show any shear during
deformation towards the current state ¢.

€11 €12 €13 €21 = €12
£=| €21 €22 €23 with €32 = €23
€31 €32 €33 €31 = €13
€1 0 0
principal strain matrix e=1|1 0 e 0
0 0 £3
spectral form € = €117 + €97iaTlg + €37373

Cartesian components

The linear strain components w.r.t. a Cartesian coordinate system are easily derived using the
component expressions for the gradient operator and the displacement vector. For derivatives

a( )i

a short notation is used : ( )

iyj = L
Ox;
. - 0 , 0 . 0
gradient operator V=€ —+é€ —+€ =
or Yy 0z
displacement vector U = Uy €y + Uy€y + U €,
linear strain tensor =3 {(Vﬁ)c + (Vﬁ)} —élce
Exx Exy CExz 2u95795 U,y + Uy, Us,z + Uz,
E= | Cyz CEyy Eyz | = 9 | Yo + Ugy 2uy,y Uy,z + Uz y
Czx Ezy Caz Uy g+ Ugz Uzy + Uy » 2uz,z

Cylindrical components

The linear strain components w.r.t. a cylindrical coordinate system are derived straight-
forwardly using the component expressions for the gradient operator and the displacement
vector.
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dient t Vo2 4g10 50
gradient operator =¢ — +é€ - — +¢é, —
or r 00 0z
displacement vector U= ur€,(0) + ur€(0) + u e,
linear strain tensor =3 {(Vﬁ)c + (Vﬁ)} —élce
1
Err Ert Epz 1 2u7‘,7‘ F(ur,t - Ut) + Uty Upy T+ Ugy
_ _ 1 1 1
E=| € Eu €z | = B Hwre — ug) + ugy 25 (up + ugt) TUz Utz
Ezr Ezt Ezz Uz + Uz %uz,t + Utz 2Uz,z

Compatibility conditions

The six independent strain components are related to only three displacement components.
Therefore the strain components cannot be independent. Six relations can be derived, which
are referred to as the compatibility conditions.

0%, 82€yy B 8255,;3, D%e, 82€yz B D%e,., 82.€xy
0y? * ox2 T 0xdy Oyoz + 0z?2  Oxdy  0x0z
82€yy n D%e,, _y 825yz 82Eyy N 0%c,, B 82ny 82Eyz
022 Oy OyOz 020x Oy? oydz  Oydx
D%c.. 0% B D%e.., D%, 825—:% B 8252y &%e.,
Ox? 022 " 020z Oxdy + 022 0z0x 020y

1 82Err 82Ett 2 82Ert 1 8Err g 8€tt 3 aﬁ'rt

r2 002 or2  r orod r or r Or r2 00 =0

1.6 Special deformations

1.6.1 Planar deformation

It often happens that (part of) a structure is loaded in one plane. Moreover the load is often
such that no bending out of that plane takes place. The resulting deformation is referred to
as being planar.

Here it is assumed that the plane of deformation is the zxo-plane. Note that in this
planar deformation there still can be displacement perpendicular to the plane of deformation,
which results in change of thickness.
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The in-plane displacement components u; and us are only a function of 1 and xo. The
out-of-plane displacement uz may be a function of x3 as well.

up = ui(xy,x2) 5 ug =us(zr,x2) ;  ug = uz(z1,x2,3)

1.6.2 Plane strain

When the boundary conditions and the material behavior are such that displacement of
material points are only in the xjxo-plane, the deformation is referred to as plane strain in
the zixs-plane. Only three relevant strain components remain.

up = u (21, r2) 3 uz =ug(xr,x2) ;5 uz=0
esz3=0 ; M3=73=0
compatibility €11,22 T €22,11 = 2612712

1.6.3 Axi-symmetric deformation

Many man-made and natural structures have an axi-symmetric geometry, which means that
their shape and volume can be constructed by virtually rotating a cross section around the
axis of revolution. Points are indicated with cylindrical coordinates {r, 6, z}. When material
properties and loading are also independent of the coordinate 0, the deformation and resulting
stresses will be also independent of 6.

Fig. 1.19 : Azi-symmetric deformation
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9 .
%( ) =0 - U = UT(’I", z)er(e) + ut(n Z)et(e) + UZ(T, z)ez
2u7“77“ —%(Ut) T Uy Upz + Usy
E== ——(Ut) + Uy 2%(ur) Ug -
Uz + Up 2 Ut 22U,

With the additional assumption that no rotation around the z-axis takes place (u; = 0), all
state variables can be studied in one half of the cross section through the z-axis.

2( )=0and uy =0 — U= up(r,2)€.(0) + uy(r, 2)e,

00
1 QUT,T 0 Up z + Uz p
Uy + Uy z 0 2uz,z

Axi-symmetric plane strain

When boundary conditions and material behavior are such that displacement of material
points are only in the r8-plane, the deformation is referred to as plane strain in the r6-plane.

plane strain deformation

up = up(r,0)

Uy = ut(""a 0) > Ezz = VYrz = Ytz &= 0
u, =0
linear strain matrix
2ur,r Uty — %(ut) 0
1 1 2
£= 5 Ut,r — ;(Ut) = Ur) 0
0 0 0

0
Uy = up(r) 1 2
uy, =0 } T3 0 Flur) 8
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1.7 Examples

Polar decomposition

R = 1i17ig1 + 1iaflge + 73703
= [cos(a)7ip1 + sin(a)Toz] o1 +
[—sin(a)fip) + cos(a)Toz] o2 + HosTos
U = Nioi7ior + piioemioe + wiiosiios
F=R-U
= Ai17lo1 + piiafio + (1i37io3
= A [cos(a)mp1 + sin(a)7io2] o1 +

) [—sz’n(a)ﬁm + COS(a)ﬁOQ] o2 + U303

Inhomogeneous deformation

A rectangular block of material is deformed, as shown in the figure. The basis {€7, &, €5} is
orthonormal. The position vector of an arbitrary material point in undeformed and deformed
state, respectively is :

To = To1€1 + To2és + T3€3 ; T = x1€1 + T9€y + To3€3

There is no deformation in é3-direction. Deformation in the 12-plane is such that straight
lines remain straight during deformation.

The deformation tensor can be calculated from the relation between the coordinates
of the material point in undeformed and deformed state.
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ho ho h
€2 €2
<> lo L l
l h — hg
T =—Tor ; T2 =7Tp2+ To1To2 ; T3 = To3
lo holo
. S L 0 L 0 L 0 . . .
F© = (VOSU) = | €o1 + €p2 + €o3 (x1€1 + x2€5 + x3€3)
81‘01 81‘02 81‘03

002 cos 003
l . h — ho . .
—xo1 | €1+ ( To2 + xo1%o2 | €2 + (zo3) €3
lo holo

I\ . . h — hg - h — ho T
= (- )ener+ | o2 | €01€2+ | 1+ o1 | €p2€2 + €p3€3
l() holo hOZO

Strain ~ displacement

The strain-displacement relations for the elongation of line elements can be derived by
considering the elongational deformation of an infinitesimal cube of material e.g. in a tensile
test.



Yy
lo |
| Exx = sz -1
/ST L 7 ’ _dr
[/ dl‘o

zZ t daZQ
Y Y _u(wg + dwg) — u(xo)
1 N d.l'()
_Ou  Ou
dyo = Oz0 Oz
§ : dy . v
L S Q= P Q" oy
g - dz ow

,,x" dzg - dr €., = —
Z/ dxg Z/ 2z 02

Fig. 1.20 : Homogeneous elongation of a truss
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Strain ~ displacement

The strain-displacement relations for the shear of two line elements can be derived by
considering the shear deformation of an infinitesimal cube of material e.g. in a torsion test.

Y

Fig. 1.21 : Shear of a three-dimensional material cube

AT . Au

~dzo  dyo

_YQ_Yp  UrR_UP _ v(zo + dxg) — v(wo) n u(yo + dyo) — u(yo)

Yoy = 5 — Ozy = a + 3 = sin(a) + sin(B)

dxo dyo dxg dyo
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o ou_ov o
- Oxg  Oyg  Ox Oy

Low o w
Tyz = oy 0Oz ' Ve = 5 T b

Strain ~ displacement

Strain-displacement relations can be derived geometrically in the cylindrical coordinate sys-
tem, as we did in the Cartesian coordinate system.

We consider the deformation of an infinitesimal part in the rf-plane and determine
the elongational and shear strain components. The dimensions of the material volume in
undeformed state are dr x rdf x dz.

U + ut,rdr

“(r +dr)

ur,tdﬁ

Ut + ut,th

Fig. 1.22 : Deformation of a cylindrical material volume

- Uppdr "
rr — dr = Upr
B (T + Ur)de —rdf (ut + ut,tde) — Ut Uy 1
= rdo * rdo B

T U 1
%t:§—¢:a+ﬁ: <Ut,r——t)+ <_ur,t>
T T

Strain gages

Strain gages are used to measure strains on the surface of a thin walled pressure vessel.
Three gages are glued on the surface, the second perpendicular to the first one and the
third at an angle of 45° between those two. Measured strains have values €41, 42 and e43.

The linear strain tensor is written in components w.r.t. the Cartesian coordinate system
with its z-axis along the first strain gage. The components ¢,,,c,, and ,, have to be



29

determined from the measured values.
To do this, we use the expression which gives us the strain in a specific direction,

indicated by the unit vector 7.
Ep =T €T

Because we have three different directions, where the strain is known, we can write this
equation three times.

Exz € [1
Eg1 = Tlg1- € ngl—n§15~gl—[1 0][ T xy} 0}:@”

Eyz  Eyy
T _ [ O 1 ] Exx Emy [ 0 _
Eg2 = Tig2* €+ Tiga = NgoE Mgy = Eye Eyy 1| = Cwy

I — T 1 Exx Ezy 1 1
€g3 = Tg3 =€ Tg3 = Ny3E N3 = 5[ L1 ] [ Eye Eyy 11~ 3 (Ezz + 262y + £yy)

The first two equations immediately lead to values for ¢,, and 4, and the remaining
unknown, e, can be solved from the last equation.

Exx = &gl
Eyy = €42 I €g1 2643 — €g1 — €42
Exy = 2693 — Exz — Eyy - 2643 — €g1 — g2 €92

= 2643 — €g1 — €g2

The three gages can be oriented at various angles with respect to each other and with
respect to the coordinate system. However, the three strain components can always be
solved from a set of three independent equations.

Shear strain

A cube is deformed in the 12-plane by simple shear. This means that points on the upper
edge move merely in 1-direction. Lines directed in 2-direction rotate over an angle o around
the 3-axis.

The deformation matrix is :

1 0
F=10 0 with v = tan(«)
0 1

O =2

The right Cauchy-Green deformation matrix is

1 ol 0
C=F'F=|7 149> 0
0 0 1

The Green-Lagrange strain matrix is

N
=2

=i(C-1) =

DN|—
O\Q o
DN,
oD
[N}
o O O
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Principal stretch ratios can be calculated from the eigenvalues of C.

1—pn ol 0
det(C—I)=det| ~ 1++2—p 0 =0 —
0 0 1—pn

A=’ +7*—p) =70 -p)=0 —
A= {0 -p+7¥* =) =71 =0 — m=1 — X3=m=1
and

L—p2+%) +p*=0 —
2

M,F%{@w)wm}:<1+g>m/m§ -

a7 7
S (S T

The linear strain matrix is

0 47 0
e=l3y 0 0
0 0 0
The principal strains are
— 37 0
det(e—I)=det | 2y — 0 | =0 —
0 0 —e
—e3 4 %725—: =e(—e2 + %72) =0 —
eg=1 ; e12==%3y

2 Stresses

Kinematics describes the motion and deformation of a set of material points, considered here
to be a continuous body. The cause of this deformation is not considered in kinematics.
Motion and deformation may have various causes, which are collectively considered here to
be external forces and moments.

Deformation of the material — not its motion alone — results in internal stresses. It is
very important to calculate them accurately, because they may cause irreversible structural
changes and even unallowable damage of the material.

2.1 Stress vector

Consider a material body in the deformed state, with edge and volume forces. The body is
divided in two parts, where the cutting plane passes through the material point P. An edge
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load is introduced on both sides of the cutting plane to prevent separation of the two parts.
In two associated points (= coinciding before the cut was made) in the cutting plane of both
parts, these loads are of opposite sign, but have equal absolute value.

The resulting force on an area AA of the cutting plane in point P is Ak. The resulting
force per unit of area is the ratio of Ak and AA. The stress vector p in point P is defined as
the limit value of this ratio for AA — 0. So, obviously, the stress vector is associated to both
poin P and the cutting plane through this point.

Ty

3

Sy
DN
S

L=

Fig. 2.23 : Cross-sectional stresses and stress vector on a plane

S

Ak

p=m

2.1.1 Normal stress and shear stress

The stress vector p can be written as the sum of two other vectors. The first is the normal
stress vector py, in the direction of the unity normal vector 77 on AA. The second vector is in
the plane and is called the shear stress vector ps.

The length of the normal stress vector is the normal stress p,, and the length of the shear
stress vector is the shear stress ps.

Fig. 2.24 : Stress vector, normal strss and shear stress
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normal stress : Pp =P 1
tensile stress : positive (¢ < 7)
. ) . g
compression stress : negative (¢ > 5)
normal stress vector : Dy = Pnll
shear stress vector : Ps =P — Pn

shear stress : ps = ||Ds|| = vV HﬁH? - p%

2.2 Cauchy stress tensor

The stress vector can be calculated, using the stress tensor o, which represents the stress
state in point P. The plane is identified by its unity normal vector 7i. The stress vector is
calculated according to Cauchy’s theorem, which states that in each material point such a
stress tensor must uniquely exist. (3! : there exists only one.)

Theorem of Cauchy : J!' tensor o suchthat : p=o-7

2.2.1 Cauchy stress matrix

With respect to an orthogonal basis, the Cauchy stress tensor o can be written in compo-
nents, resulting in the Cauchy stress matrix g, which stores the components of the Cauchy
stress tensor w.r.t. an orthonormal vector base {€},é5,€3}. The components of the Cauchy
stress matrix are components of stress vectors on the planes with unit normal vectors in the
coordinate directions.

With our definition, the first index of a stress component indicates the direction of the
stress vector and the second index indicates the normal of the plane where it is loaded. As
an example, the stress vector on the plane with 7 = €] is considered.

Sy

p3

P2

p1

Fig. 2.25 : Components of stress vector on a plane

4
4
4
4

TS
1
q

3
W0
3
1
W0
Q

Wy
e
3
I
e
Q
3

Il
o
!



33

D1 o111 012 013 1 o11
D2 | = | 001 0929 093 0| =1 on
D3 031 032 033 0 031

The components of the Cauchy stress matrix can be represented as normal and shear stresses
on the side planes of a stress cube.

033

923

032
099 011 012 013
= g = | 021 022 023

031 032 033

Fig. 2.26 : Stress cube

Cartesian components

In the Cartesian coordinate system the stress cube sides are parallel to the Cartesian coordi-
nate axes. Stress components are indicated with the indices x, y and z.
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02z

Ozxx Ogxy Ozxz
g=| Oyz Oyy Oy

Fig. 2.27 : Cartesian stress cube

Cylindrical components

In the cylindrical coordinate system the stress ’cube’ sides are parallel to the cylindrical
coordinate axes. Stress components are indicated with the indices r, t and z.

Ozz

A

//
Otr
Orr  Opt Opg
Orp $/
/ O 0w Otz

Ozr Ozt Ozz

S|
Il

Fig. 2.28 : Cylindrical stress ”cube”

2.2.2 Principal stresses and directions
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It will be shown later that the stress tensor is symmetric. This means that it has three real-
valued eigenvalues {01, 02,03} and associated eigenvectors {7y, 72, 73}. The eigenvectors are
normalized to have unit length and they are mutually perpendicular, so they constitute an
orthonormal vector base. The stress matrix w.r.t. this vector base is diagonal.

The eigenvalues are referred to as the principal stresses and the eigenvectors as the
principal stress directions. The stress cube with the normal principal stresses is referred to
as the principal stress cube.

Using the spectral representation of o, it is easily shown that the stress tensor changes
as a result of a rigid body rotation Q.

to

t \202
, Ull
z O =« /03

3

Fig. 2.29 : Principal stress cube with principal stresses

Q

'ﬁl :O'lﬁl
-ﬁg = O'Qﬁg — O = Ulﬁlﬁl + 0'27_7:27_7:2 + Ugﬁgﬁg
g -ﬁg = Jgﬁg

spectral form

)

01 0 0
principal stress matrix op=| 0 oo O
0 0 o 3

Stress transformation

We consider the two-dimensional plane with principal stress directions coinciding with the

unity vectors €1 and €. The principal stresses are o; and o9. On a plane which is rotated

anti-clockwise from €] over an angle a < § the stress vector p and its normal and shear

components can be calculated. They are indicated as o, and 7, respectively.

area 1
Ta
o1
—_—
o

€2 .
! \ area sin
$ 02 area cos
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Fig. 2.30 : Normal and shear stress on a plane

g = € +0252
= —sm( )€1 + cos(a)ér
p =01 =—0sin(a)e; + o3 cos(a)és

Oo = 01 8i0% () + 03 cos? ()

Ta = (092 — 01) sin(«@) cos(«)

Mohr’s circles of stress

From the relations for the normal and shear stress on a plane in between two principal stress
planes, a relation between these two stresses and the principal stresses can be derived. The
resulting relation is the equation of a circle in the o,7,-plane, referred to as Mohr’s circle for
stress. The radius of the circle is (o — 02). The coordinates of its center are {4 (o1 +02), 0}.

Stresses on a plane, which is rotated over o w.r.t. a principal stress plane, can be found

in the circle by rotation over 2.
Because there are three principal stresses and principal stress planes, there are also three
stress circles. It can be proven that each stress state is located on one of the circles or in the

shaded area.

0o = o1 sin?(a) 4 09 cos?(a)
= 01(% — Lcos(2a)) + 02(% % s(2a))

= 5(01 4 02) — 5(01 — 02) cos(2a)  —
(1) {oa—3(01+ 02)}2 ={%(o1 — 02)}26052(2a)
To = —cos(a) sin(a)oy + cos(a) sin(a)oy = (09 — 07)sin(2a) —

2) 2= {L(0s—01)} sin®(20)

) +2) — {oa—3014+0)} +72= {301 —09)}
T TT

Oa Om o o1

—
g9 01 g
\ 2 o
Ta

Fig. 2.31 : Mohr’s circles
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That there are three circles can be demonstrated by considering a random stress state {o, 7}
in the o7-plane. The stress circles are subsequentially translated by superposition of a hydro-
static stress —3 (o1 + 03), —3(02 + 01) and —3(03 + 02). With the use of the stress vector 7
and the stress matrix ¢*, resulting after superposition, it can be proven that the stress state
is inside the largest stress circle and outside the other two.

inside oy, o3-circle

Sy
Ty

{o—LYor+ao)P+r2=0+72=]p]]> =

with ﬁ2:(02_%(‘71+03))2§0‘2:(Ul—%(01+03)) — ot 47 <a?

outside oy, o3-circle

—
)
|
DO —
Q
w
_|_
)
NS
—
[\]
+
\]
[N}
Il
)
[N}
_|_
\]
(3]
Il
ST
T
Il
S
g1l
Il
3
IQ
v [Q
3

. 2 2
with 2= (01— 4(03+02))” >’ = (02— (03 +02))" — o*+72>a

outside o1, oo-circle

2.3 Special stress states

Some special stress states are illustrated here. Stress components are considered in the Carte-
sian coordinate system.

2.3.1 Uni-axial stress

An unidirectional stress state is what we have in a tensile bar or truss. The axial load N
in a cross-section (area A in the deformed state) is the integral of the axial stress o over A.
For homogeneous material the stress is uniform in the cross-section and is called the true or
Cauchy stress. When it is assumed to be uniform in the cross-section, it is the ratio of N
and A. The engineering stress is the ratio of N and the initial cross-sectional area Ag, which
makes calculation easy, because A does not have to be known. For small deformations it is
obvious that A ~ Ay and thus that o ~ o,,.
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Ozxx Ozzx

Fig. 2.32 : Stresses on a small material volume in a tensile bar

N -

true or Cauchy stress o= Z =0yp — O = Opp€CrCy
. . N
engineering stress Op = i
0

2.3.2 Hydrostatic stress

A hydrostatic loading of the material body results in a hydrostatic stress state in each material
point P. This can again be indicated by stresses (either tensile or compressive) on a stress
cube. The three stress variables, with the same value, are normal to the faces of the stress
cube.



39

Y
K -
! Oxx =P
: 7 Oyy =P JERN - > > >
— P Jyy _ o = p(Ez€y + €y€y + €.€.)
R e 22 =D 0 = —p(E€y + €€, + E.E.)

']
: ip Ogxx = —P
: Oyy = —P
R . 1 <——p Ozz = —P
P T

Fig. 2.33 : Stresses on a material volume under hydrostatic loading

2.3.3 Shear stress

The axial torsion of a thin-walled tube (radius R, wall thickness t) is the result of an axial
torsional moment (torque) 7. This load causes a shear stress 7 in the cross-sectional wall.
Although this shear stress has the same value in each point of the cross-section, the stress
cube looks differently in each point because of the circumferential direction of 7.

T R

Fig. 2.34 : Stresses on a small material volume in the wall of a tube under shear loading

o = 7@ + &) with i # ]
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2.3.4 Plane stress

When stresses on a plane perpendicular to the 3-direction are zero, the stress state is referred
to as plane stress w.r.t. the 12-plane. Only three stress components are relevant in this case.

N 09292
€3 091

Fig. 2.35 : Stress cube for plane stress in 12-plane

0'3320'1320'23:0 — 0"53:0 —

relevant stresses : oy11,092, 012

2.4 Resulting force on arbitrary material volume

A material body with volume V and surface area A is loaded with a volume load ¢ per unit of
mass and by a surface load p per unit of area. Taking a random part of the continuum with
volume V and edge A, the resulting force can be written as an integral over the volume, using
Gauss’ theorem. The load pq'is a volume load per unit of volume, where p is the density of
the material.

Dy

N

Fig. 2.36 : Forces on a random section of a material body

f?:/pqdv+/ﬁdA:/p(jdv+/ﬁ-aTdA
\% A 1% A
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Gauss theorem /
A

ﬁ-()dA:/vﬁ-()dv -

I?Z/[Pff—l-ﬁ-aT]dV
Vv

2.5 Resulting moment on arbitrary material volume

The resulting moment about a fixed point of the forces working in volume and edge points of
a random part of the continuum body can be calculated by integration.

Sy

Dy

N

311

)

Fig. 2.37 : Moments of forces on a random section of a material body

Mo :/f*pcjdVJr/f*ﬁdA

\% A

Resulting moment on total body

Obviously we can also calculate the resulting moment for the whole material volume. By
introducing a special point R other than the origin, the resulting moment can be expressed
in the resulting moment about this point anf the moment of the resulting forces about this
point. Often the resulting moment is considered with respect to the center of mass M with
position Z;.

Mo = /f*pcfdv+/a?*ﬁd/1
1% A

:/(fR—I-f')*p(de—l-/(fR-l-F)*ﬁdA
\%4 A
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2.6 Example

Principal stresses and stress directions

The stress state in a material point P is characterized by the stress tensor o, which is given
in comonents with respect to an orthonormal basis {é7, &, ée3} :

o = 10¢161 + 6(€12 + é2€71) + 10é2¢e5 + €363

The principal stresses are the eigenvalues of the tensor, which can be calculated as follows :

10 —o 6 0
det 6 10— o 0 =0 —
0 0 1—0

(10 —0)?(1—0) —36(1 —0) =0
(1—0){(10 —0)* =36} =0
(1-0)(16—0)(4—0)=0 — o01=16 ; o09=4 ; o03=1

The eigenvectors are the principal stress directions.

-6 6 0 a1 0
o1 =16 — 6 —6 0 as | =10 —
0 0 —15 Qs 0
ap=a ; az3=0 Y- N
A tadtai=1 } - = V26 + 5V
idem : ﬁgz—%ﬁéi-l-%\/iéé ; i3 = €3

The average or hydrostatic stress can be calculated, leading to the hydrostatic stress tensor.
The deviatoric stress tensor is the difference of the total stress tensor and the hydrostatic
stress tensor.

Opm = str(o) =7
ol = str(o)I

ocl=0—-0o"= o — str(o)I
= {10é1 €1 + 6(€12 + €261) + 10625 + é3e3} — 71

—

= 3e1€e] + 6(5162 + 5251) + 3éxe5 — 6é3es
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3 Balance or conservation laws

In every physical process, so also during deformation of continuum bodies, some general ac-
cepted physical laws have to be obeyed : the conservation laws. During deformation the total
mass has to be preserved and also the total momentum and moment of momentum. Because
we do not consider dissipation and thermal effects, we will not discuss the conservation law
for total energy.

3.1 Balance of mass

The mass of each finite, randomly chosen volume of material points in the continuum body
must remain the same during the deformation process. Because we consider here a finite
volume, this is the so-called global version of the mass conservation law.

From the requirement that this global law must hold for every randomly chosen volume,
the local version of the conservation law can be derived. This derivation uses an integral
transformation, where the integral over the volume V in the deformed state is transformed
into an integral over the volume Vj in the undeformed state. From the requirement that the
resulting integral equation has to be satisfied for each volume Vj, the local version of the mass
balance results.

The local version, which is also referred to as the continuity equation, can also be derived
directly by considering the mass dM of the infinitesimal volume dV of material points.

The time derivative of the mass conservation law is also used frequently. Because we
focus attention on the same material particles, a so-called material time derivative is used,
which is indicated as (7).

to t

Fig. 3.38 : Random volume in undeformed and deformed state

/pdvz/podvo VT o /(pJ—Po)dVbZO VT —
\% Vo ‘_/O

pJ = po vV ZeV(t)

dM =dMy — pdV =podVy — pJ=py YZEV(E) — pJ+pJ=0
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3.2 Balance of momentum

According to the balance of momentum law, a point mass m which has a velocity ¢, will change
its momentum i = m@ under the action of a force K. Analogously, the total force working
on a randomly chosen volume of material points equals the change of the total momentum of
the material points inside the volume. In the balance law, again a material time derivative
is used, because we consider the same material points. The total force can be written as a
volume integral of volume forces and the divergence of the stress tensor.

t

Fig. 3.39 : Forces on random section of a material body

4

- D3 D . _
K = DL Ft/pvdv v V. —
1%
D . D —
o o= [ oinan v T
‘70 ‘70
/(pvJ+pvJ+pvJ) dvi VAR
Vo
mass balance : pJ+pJ =0 —
:/pwdvo:/pz?dv vV OV
o 1%
/(pqﬁrﬁ-aC) dV:/pde VoV
1% %

From the requirement that the global balance law must hold for every randomly chosen volume
of material points, the local version of the balance of momentum can be derived, which must
hold in every material point. In the derivation an integral transformation is used.

The local balance of momentum law is also called the equation of motion. For a stationary
process, where the material velocity ¢ in a fixed spatial point does not change, the equation
is simplified. For a static process, where there is no acceleration of masses, the equilibrium
equation results.
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—

. 5 .
local version : equation of motion V .o+ pd= pv = pé—: + pv- (Vﬁ') VZeV(t)

ov > >
stationary <§ = 0> V.o+pd=pv- (Vﬁ)
static : equilibrium equation V-o°+pi=0

3.2.1 Cartesian and cylindrical components

The equilibrium equation can be written in components w.r.t. a Cartesian vector basis. This
results in three partial differential equations, one for each coordinate direction.

Oxzz + Oxyy + Ozz2 + PGz = 0
Oyre T Oyyy + 0yzz +pgy =0
Ospxt Ouyy + 0222+ pq. = 0

Writing tensor and vectors in components w.r.t. a cylindrical vector basis is more elaborative
because the cylindrical base vectors €, and €; are a function of the coordinate 6, so they have
to be differentiated, when expanding the divergence term.

1 1

Oppp + ;Urt,t + ;(Urr - Utt) + Orzz + PGr = 0
1 1

Oty + ot + ;(Utr +0p) + 0tz +pg =0

1 1
Oorp + ;Uzt,t + ;O'zr + 022+ pq = 0

3.3 Balance of moment of momentum

The balance of moment of momentum states that the total moment about a fixed point of
all forces working on a randomly chosen volume of material points (Mp), equals the change
of the total moment of momentum of the material points inside the volume, taken w.r.t. the

same fixed point (Lo).
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)

Fig. 3.40 : Moment of forces on a random section of a material body

. DLo D [_. _
\%
D [. D, _
:Ft/as*pde%:/Ft(w*pvJ)d% vV W
Vo Vo
:/(f*pﬁj+f*paj+f*pi7j+f*pfvj) v AR A
Vo
mass balance :  pJ 4+ pJ =0 .
ExT=0x0=0
:/f*p{wdvoz/f*p{?dv VoV
Vo \%
/f*pidv+/f*ﬁdA:/f*pi7dV vV V
\% A v

For the analysis of the dynamics of deformable and rigid bodies the balance law is often
reformulated, such that its motion is the superposition a rotation about the center of rotation
R and its translation. In appendix 77 this is elaborated.

To derive a local version, the integral over the area A has to be transformed to an
integral over the enclosed volume V. In this derivation, the operator % is used, which is
defined such that

holds for all vectors @ and b.
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Substitution in the global version and using the local balance of momentum, leads to the local
version of the balance of moment of momentum.

/f*pcj’dV+/3e:ach+/a_:’*(§-ac)dV:/f*m;de vV Vo o—

\4 \4

f*[p(f—l—(@-ac)—m‘_f} dV—I—/?’e:achzﬁ v Vo -
Vv

<

Te— T T

032 — 023 0
oi3—o3 | =10
091 — 012 0
c‘=o vV ZeV(t)

3.3.1 Cartesian and cylindrical components

With respect to a Cartesian or cylindrical basis the symmetry of the stress tensor results in
three equations.

Q:QT -

Cartesian : Opy = Oyx 3 Oyz =20z ; Oz =0z,

cylindrical : Opt = O4p 3 Oty =0st 3 Ogp = Opy
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3.4 Balance of energy

The first law of thermodynamics states that the total amount of energy supplied to a material
body is converted to kinetic energy (Uy) and internal energy (U;). The supplied energy is
considered to be 1) work done by external mechanical loads (U.), and 2) thermal energy
supplied by internal sources or external fluxes (U;). The internal energy can be of very
different character, such as elastically stored energy and dissipated energy due to plastic
deformation, viscous effects, crack growth, etcetera.

D D
E(Ug"‘Ut) — E(Uk‘i‘Ul)

3.4.1 Mechanical energy

When a point load k is applied in a material point and the point moves with a velocity ¥,
the work of the load per unit of time is U, = k-¥. For a random volume V with edge A
inside a material body the mechanical work of all loads per unit of time can be calculated.
Using Gauss’ theorem, this work can be written as an integral over the volume V. Also the
equation of motion is used to arrive at the final result.

t

Fig. 3.41 : Mechanical load on a material volume

Ue:/pcj’-ﬁdV+/ﬁ-27dA:/{p@-ﬁ%—ﬁ-(a’c-ﬁ)}dV
\% A \%

-(00-6)2(6-0'0)-17—1—0':(617)

:p{T-ﬁ—pcj’-ﬁ’+a:D+a:Q

3.4.2 Thermal energy

Thermal energy can be produced by internal sources. The heat production per unit of mass
is 7 [J kg™ !].
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Heat can flow in or out of a material body or in the body from one part to another. In
a material point P the heat flux vector is H [J]. The heat flux density vector in P through a
plane with area AA is

—

- H
= 1 — -2
h=0m A [ m™]
The resulting heat flux in P through the plane is 7 - h [J m~2] | where 7 is the unit normal

vector on the plane.
For a random volume V having edge A with unit normal outward vector 77, the increase

in thermal energy at time ¢ is Uy.

Fig. 3.42 : Heat sources in and heat fluz into a material volume

Ut:/prdV—/ﬁ-ﬁdA:/(pr—§-ﬁ)dV
1% A 1%

3.4.3 Kinetic energy

The kinetic energy of a point mass m with velocity ¥ is

—

HQZ%mﬁ-v

Uk:%meU

For a random volume V of material points, having density p and velocity @, the total kinetic
energy U can be calculated by intergration.

D D
1 == 1 == 1=
Uk(t):/ipv vdvV  — Uk:ﬁt/ip” vdV:Ft/ipv uJ dVj
Vv Vv Vo
:%/{pff GJ + 207 -TJ + p7 fw} avi
Vo
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3.4.4 Internal energy

The internal energy per unit of mass is ¢. The total internal energy of all material points in
a random volume V' of a material body, U;, can be calculated by integration.

vit) = [poav — Gi= . [ooav =2 [ poravi

\% \% Vo
= [ {307+ 963+ po3} avy
Vo
— [piav
%

3.4.5 Energy balance

The energy balance or first law of thermodynamics for a random volume of material points in
a material body, can be written as an integral equation. It is the global form of the balance
law, because a finite volume is considered.

U +U, =U,+ U

/(pf}’-fH—U:D—I—pr—ﬁ-ﬁ)dV:/(pi_f-ﬁ—l-pqz'ﬁ)dV v Vv
% v
/qudvz/(a:Derr—ﬁ-ﬁ)dv v v

v

1%

3.4.6 Energy equation

The local version of the energy balance, also called the energy equation, is easily derived by
taking into account the fact that the global version must be valid for each volume V.

The specific internal energy ¢ can be written as the product of the specific heat C),
(assumed to be constant here) and the absolute temperature 7.

The heat flux density h is often related to the temperature gradient vT accoding to
Fourier’s law, with the thermal conductivity tensor K.

pd+V-h=0:D+pr vV ZeV(t)

¢ =C,T (C, : specific heat)
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pC’pT—Fﬁ-ﬁ:a:D—kpr vV ZeV(t)
Fourier’s law  h = —K - (VT)
pCpT—ﬁ- {K (§T)} =0:D+pr
pC,T — (V-K)-(VT)— K : (VVT)° =0 : D+ pr
homogeneous conductivity : V-K=0 —
pC’pT—K:(ﬁﬁT)C:a:D—i-pr

orT

pCpr + pCy¥- (VT)— K : (VVT) =0 : D+ pr

Energy equation : Cartesian components

orthotropic conductivity K = k. e, + kyeye, + k.e.e,
oT
Pcpﬁ + pCp (VT w + vy Ty + 0T 2) — kiTga — kyTyy — kT2

= OzaVUz,z + OyyUyy + 022Uz 2 + pT

two-dimensional (in zy-plane only)

oT
pCpE + pCp (v2Tz + vyTy) — kT oo — kyTyy = OwaVoz + Oyyvyy + pr
one-dimensional ( in x-direction only; k, = k)
oT
pcpg + pCpUzT,z - kT,mc = OgqUzz + PT

no convection (v, = vy, = 0)

oT

pcpﬁ - kT’,mc =pr

no heat source/sinc

oT
stationary

r:c:c =0

solution
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Energy equation : Cylindrical components

orthotropic conductivity K =k,e.e + kierer + k.e,e,

5T . . . . 1 - —
pCpE + pCp(vr€; + 016} + v;€;) + (16 + ;Tvtet +T:€:)

(e at? e O (698 61T L TN e, 1 ke + ke
Ta"f’ trc‘?@ zaz T(‘)r trc‘?@ Z(‘?z . rCrCr [AA 2C2C2

= OppUryr + OyUry + 0220, + pr

orT
pcpﬁ
1 1

L L1 L1 L L1 - . L1
- (ererT,rr &g T+ Er€i Ty +ére;Tr, + etet;T,r + eter;T,tr - eterﬁT,t + etetﬁT,ttJr

1
+ pCp(v, T, + ;UtT,t +v,T,)

)

| . | . . o -
€ty ;T,tz + ezerT,zr + ezet;T’,zt + ezezT,zz : (krerer + kierer + kzezez) = OppUry + OVt + 0220, + pr

oT 1
pcpﬁ + pCp(vrT,r + ;UtT,t + UzT,z)

1 1
- <T,rrkr + ;T,rkt + ﬁT,ttkt + Tl,zzkz) = OppUpy + OVt + 0220, + pr

Axi-symmetry

1

oT
pC. + pcp ('UTT,T + UzT,z) - <T,rrkr + ;T,rkt + T,zzkz> = OppUpyp + 0220, » + pT

Pt
two-dimensional ( polar; rt-plane)

oT
pcpﬁ

1
+ pOpUrT,r - krT’,rr — Ky ;T’,r = OppUpy + pr
stationary ( % =0)
1
pcpvrT’,r - krT’,rr - kt;rr = OppUpy + pr
isotropic thermal conductivity ( k, =k, =k )
1
pva,«Tﬂ« — k'T,rr - k’;T,r = OpyUry + pr
no convection (v, =v,, =0 )
1
_kT’,rr - k_rr = pr
r
no heat source/sinc
1
T,rr + _T’,r =0
r
solution

T=r" - ala—)r"2+rtar* =0 - a=0 — T=co+ar
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3.4.7 Mechanical power for three-dimensional deformation

Elastic deformation of a three-dimensional continuum leads to storage of elastic energy, which
can be calculated per unit of undeformed (W) or deformed (W) volume. Different expressions
for the strain rate can than be combined with different stress tensors, which are all a function
of the Cauchy stress tensor o. The starting point is the change of stored energy per unit of
deformed volume.

W=0:D o = Cauchy stress tensor
Wy = [Jo|: D
=kr:D + = Kirchhoff stress tensor

Wo=Jo:D=Jo:1 (F-F—l +(F-F—1)C) -
=Jo: (F-F‘l) :J(F_I-O') F=S:F=S:U
=S & S = 1st-Piola-Kirchhoff stress tensor

Wo=Jo:D=Jo:(F*BE-F')=J(F'0-F°)E
—P:E P = 2nd-Piola-Kirchhoff stress tensor

3.5 Special equilibrium states

The three-dimensional equilibrium equations can be simplified for special deformation or
stress states, such as plane strain, plane stress and axisymmetric cases.

Planar deformation

It is assumed here that the z-direction is the direction where either the strain or the stress
is zero. Only stresses and strains in the plane perpendicular to the z-direction remain to
be determined from equilibrium. The strain or stress in the z-direction can be calculated
afterwards, either directly from the material law or iteratively during the solution procedure.

Cartesian components

Ozze + Ozyy + Pge =0
Oyaa + Oyyy + P2y =0

Opy = Oya

cylindrical components
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1 1
Orrr + ;Urt,t + ;(Urr - Utt) + pqr = 0

1 1
Otry + ot + ;(Utr +0opt) + pge =0

Ort = Otr

Axisymmetric deformation

In many cases the geometry, boundary conditions and material behavior is such that no
state variable depends on the circumferential coordinate 6 : % = 0. For such axisymmetric
deformations, the equilibrium equations can be simplified considerably.

In many axisymmetric deformations the boundary conditions are such that there is no
displacement in the circumferential direction : u; = 0. In these cases there are only four
relevant strain and stress components and only three equilibrium equations.

When boundary conditions and material behavior are such that displacement of material
points are only in the rf-plane, the deformation is referred to as plane strain in the r@-plane.

When stresses on a plane perpendicular to the z-direction are zero, the stress state is

referred to as plane stress w.r.t. the r@-plane.

1
Orrr + ;(O'rr - Utt) + Orz,z + pqr = 0

2 .

Otrr + ;(Utr) + Otz,z + pq; = 0 (lf Ut 7é 0)
1

Ozrp + ;Uzr + 02+ pq = 0

Opt =0tr ; Otz =0z (if u # 0)

Ozr = Opz

planar 1
Orrr + ;(Urr - Utt) + pqr = 0

2 .
Utr,r"";(o'tr)"’_th =0 (if uy # 0)
Opt = O¢p (lf Ut 750)

3.6 Examples

Equilibrium of forces : Cartesian

The equilibrium equations in the three coordinate directions can be derived by considering
the force equilibrium of the Cartesian stress cube.
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/ Oz

O‘y"L'
Ozx

N Oy ouyydy
Oyy + Oyyydy
Ozy + Oy ydlY

Oyz
Ozz

(Opz + Opz odx)dydz + (0gy + Ogyydy)daxdz + (04; + 04z dz)dzdy —
(O22)dydz — (0gy)drdz — (04.)dxdy + pgpdrdydz =0

Oxzz + Ozyy + Ozz2 + PGz = 0

Equilibrium of moments : Cartesian

The forces, working on the Cartesian stress cube, have a moment w.r.t. a certain point in
space. The sum of all the moments must be zero. We consider the moments of forces in
the zy-plane w.r.t. the z-axis through the center of the cube. Anti-clockwise moments are
positive.

oyy(y + dy)
Oay(y + dy)
O':c:c(m) O'I;C(IL’ + d:L’)
O'yx(l') O'yx(l‘—Fd.l?)
Umy(y)

Uyy(y)
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Oyedydz %d:r + oy dydz %da: + ayx7xd:rdydz%da:
— Ogydrdz %dy — Ogydrdz %dy — Ogy zdxdydz %dy =0

Oyz — Ogy = 0 —  Oyg = Ogy

Equilibrium of forces : cylindrical

The equilibrium equations in the three coordinate directions can be derived by considering
the force equilibrium of the cylindrical stress 'cube’. Here only the equilibrium in r-direction
is considered. The stress components are a function of the three cylindrical coordinates 7,
6 and z, but only the relevant (changing) ones are indicated.

att(H + d@)

Y(e +do)

O'tt(e)

—opp(r)rdfdz — oy, (2)rdrdd — o,.(0)drdz — att(H)dr%dez
+ opr(r 4+ dr)(r + dr)dfdz + oy, (z + dz)rdrdd
+ 0,4(0 + dO)drdz — o (0 + d9)dr%d«9dz + pgrrdrdfdz =0

Oprprdrdddz + oppdrdfdz + o, crdrdfdz + o g drdfdz
— oy (0)drdbdz + pg,drdfdz =0

1 1 1
Oppp + —Opp + Opzz+ — Oppt — — Oyt + Py = 0
T T T
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Equilibrium of moments : cylindrical

The forces, working on the cylindrical stress cube, have a moment w.r.t. a certain point in
space. The sum of all the moments mus be zero. We consider the moments of forces in
the rf-plane w.r.t. the z-axis through the center of the cube.

Utt(0 + d0)

Y(e +do)

/ (®)

ou (r)rdfdz 3dr + o4 (r + dr)(r + dr)ddz 3dr
— o (0)drdz Lrdd — 0, (0 + dO)drdz Lrdd = 0

oprdrdddz — oprdrdfdz = 0 — Otr = Opt

Equilibrium of heat flow : cylindrical

Heat is flowing out of the volume, so the change in temperature is negative.
h. + 2= dz

hy + 2= dr
—
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T hy h,
—pC’prderdza— =\ h,+ 8—dr (r +dr)dodz — h,rdfdz + | h, + 8_ rdfdr — h,rdfdz
ot or 0z
linearization
T T 4
—pC’prderdza— = h,drdfdz + Oh rdfdrdz + Oh rdfdrdz —
ot or 0z
8_T__8h,«_1h _8hz
Pp ot Or ro 0z
or or or o*T 10T | 0°T
h,=—-k— ; h,=—-k— Co— =k—— + k- — —
or 0z P Ot or2 + r Or 022

4 Constitutive equations

Stresses must always satisfy the balance laws, which are considered to be laws of physics in
the non-quantum world, where we live our lives together with our materials and structures.
Balance laws must apply to each material, of which the deformation is studied. It is obvious,
however, that various materials will behave very differently, when subjected to the same
external loads. This behavior must be incorporated in the continuum mechanics theory and
is therefore modelled mathematically. The resulting equations are referred to as constitutive
equations. They can not fully be derived from physical principles, although the theory of
thermodynamics tells us a lot of how they must look like. The real mathematical formulation
of the material laws is however based on experimental observations of the deformation of the
material.

In later sections, the behavior of a wide range of materials is modelled and used in a
three-dimensional context. In this chapter, the more general aspects of constitutive equations
are discussed.

4.1 Equations and unknowns

Although it is obvious that material laws must be incorporated to describe the behavior of
different materials, they are also needed from a purely mathematical point of view. This has
to do with the number of unknown variables and the number of equations, from which they
must be solved. Obviously, the number of equations has to be the same as the number of
unknowns.

The local balance laws for mass, momentum and moment of momentum have to be sat-
isfied in every material point of the continuum body at every time during the deformation
process.

The mass balance law is a scalar equation. The balance of momentum or equation of
motion is a partial differential equation. It is a vector equation. The balance of moment of
momentum is a tensor equation.

The unknown variables, which appear in the balance laws, are the density p of the mate-
rial, the position vector ¥ of the material point and the stress tensor o. The continuity
equation can be used to express the density in the deformation tensor F', which is known,
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when the position & of the material point is known. So we can skip the mass balance from
our equation set and the density from the set of unknowns.

The moment of momentum equation can be used directly to state that there are only 6
unknown stress components instead of 9. So we loose three equations and three unknowns.
The number of unknowns is now 9 and the number of equations is 3, so 6 constitutive equa-
tions are required. These equations are relations between the stress components and the
components of the position vector.

mass pJ = po '
momentum V.o + pd = pv
moment of momentum oc‘=o0o

density
position vector
Cauchy stress tensor

Q &

The number of unknowns is now 9 and the number of equations is 3, so 6 constitutive equa-
tions are required. These equations are relations between the stress components and the
components of the position vector.

o = N(Z)

4.2 General constitutive equation

The most general constitutive equation states that the stress tensor in point & at (the cur-
rent) time ¢, is a function of the position of all material points at every previous time in
the deformation process. This implies that the complete deformation history of all points is
needed to calculate the current stress in each material point.

This constitutive equation is far to general to be useful. In the following it will be speci-
fied by incorporating assumptions about the material behavior. In practice these assumptions
must of course be based on experimental observations.
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Fig. 4.43 : Deformation history of a continuum

o(Z,t)= N{Z 7 |VZeV;Vr<t}

4.2.1 Locality

A wide range of materials and deformation processes allow the assumption of locality. In that
case the stress in a point & is determined by the position of points in its direct neighborhood,
so points with position vector & 4+ dZ. This can be written in terms of the deformation tensor

!
i
K
&

I

N, F(&7),7 V7<)

@)

Fig. 4.44 : Deformation with local influence

4.2.2 Frame indifference
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The stress state in a material point will not change when the material body is translated
and/or rotated without (extra) deformation, i.e. when it moves as a rigid body. The vari-
ables in the constitutive equation may, however, change. The constitutive equation must be
formulated such that these changes do not affect the stress state in a material point.

A rigid body translation is described with a displacement vector, which is equal for all material
points. The stress is not allowed to change, so it is easily seen that the constitutive function
N cannot depend on the position .

Fig. 4.45 : Rigid body translation of a continuum

o(Z,t)=N(F(Z71),7|V71<t)

The symmetric Cauchy stress tensor can be written in spectral form. When the deformed body
is subjected to a rigid rotation, described by the rotation tensor @, the principal stresses do
not change, but the principal directions do. This means that the Cauchy stress tensor changes
due to rigid rotation of the material.

The deformation tensor F' will also change as a consequence of rigid rotation, which can

be easily seen from the polar decomposition.
The relation between o* and F* must be the same as that between o and F', which

results in a requirement for the constitutive equation. (We skip the Z-dependency of F'.)

{ N

Q
i = Q-
iy = Q-+ Ty
t* =k —
g = Q + 1i3

Fig. 4.46 : Rigid body rotation of a continuum

o = 017171 + 02mfiafiy + 03Ti3Ms
0" = 0171]1] + o2mi5Ty + 037515

=01Q 1111 - Q° + 02Q - TiaNla - Q° + 03Q - Ti3Tz - Q°
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= Q- [o17171 + o2fiaily + 03iziiz] - Q° = Q - o - Q°
F-RU — F -R-U=Q-R-U — F'-Q-F

objectivity requirement
Q)N (F(7) |V 7<) Q) = N(Q-F(r) | ¥ 7 <1) v oQ

c=CE=C}(C—-1)=CL(F"-F-1I)

NOT OBJECTIVE

c=CA=C3B-I)=C}(F-F" -1

F*"=Q-F
A*:%(Q-F-FT-QT—I) :%Q. (F-FT—I) QT=Q-A-Q°

o' =CA"

OBJECTIVE

—pI +2nD

g
D=XL+L% with L=F.F!

0'* Q.O'.QT

F*:Q.F ; F**le—l.Qc : F*:Q-F+Q.F

L'=(Q F+Q-F)F'Q=QQ+QF-F'.q

D*:% Q.QC+Q'F'F_1°QC+Q-QC+Q.(F.F—1)C.QC
QQC:I _ QQC+QQC
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-Q-D-Q°
o = —pI +2nD*

OBJECTIVE

4.3 Invariant stress tensor

For convenient constitutive modeling where stress (rate) is related to deformation (rate), we
need stress tensors which are invariant with rigid rotation. Also their time derivative must
answer this requirement.

A stress tensor S = A -0 - A° can be defined, where A is to be specified later, but always
has to obey A* = A-Q°. It follows that the stress tensor S is invariant for rigid rotations.

S=A.0-A°

S* = A*.0*- A" = A*.Q-0-Q°- A*
R
define A" = A-Q°

S =A.-Q°Q-0-Q°Q-A°=A-0-A°= S

S = invariant for rigid rotation

Also its time derivative S is inveriant.

S=A-0-A+A-6-A°+A.0-A°
S =A" 0" A+ A .5 A+ A g A
—(A-Q°+A4-Q9)-Q-0-Q°-Q-A°+
AQQoQ+Q¢Q+Q0c-Q)Q-A+
AQQ-0-Q°-(Q-A"+Q- A
=A0-A+AQ QoA +A-Q-Q-0-A°+
A6-A4+A0-Q-Q-A+A-c-A"+
A-c-Q°-Q-A°
—A-c-A°+A-6-A°+A-0-A°+
A-QQo-A+A-Q°-Q-0-A°+
Ac-Q Q- A+A-0-Q°-Q- A°

=S — S = invariant for rigid rotation
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The time derivative of S can also be expressed in the Cauchy stress tensor and its rate. As

a short notation the Cauchy stress rate 7 is introduced, which is a function of &, A and A.
This tensor has the same transformation upon rigid body rotation than the Cauchy stress
tensor o.

S=A-0-A°

S=A-0c-A+A-6-A°+A.0-A°
:A'(A_l'A)'O"AC-I-A-O"-AC—I—A-O'-(A_l.A)C.AC
=A- {(A_l-A)-o-+g-.(A_1.A)C_|_d.} CAC— AT AC

G=6+(AA)gto- (AL A)

& =6 +(AT Ao e (AT AT
A" =A-Q° — A*_I:A_l*:Q-A_l
A'=A.Q°+A-Q°
AT AT =Q- AT AQ°+Q-QF

=6"+Q-A"A.Q 0" +Q-Q -0+
U*.Q.(A—I_A)C.Qc_i_o_*.Q.Qc
=Q-0-Q°+Q-6-Q°+Q-0-Q +
QA" A c-Q+Q-Q°-Q°-0-Q° +
Qo (A A Q+Q-0-Q°Q-Q°
—Q-[6+(A 1 A)o+o- (A1 A)-Q°
Q.

® © L
g-Q° — o = objective

4.4 Objective rates and associated tensors

The tensor A is now specified, which results in some alternative invariant stress tensors.
With each tensor a so-called objective rate of the Cauchy stress tensor is associated. choosing
A c{F1 Q' F¢ R} results in the Truesdell, Jaumann, Cotter-Rivlin and Dienes tensor
and rate.

general tensor S=cp=A-0-A°
S=60=A-60-A°
general rate o =06+ (A A)g+0- (AT A
Truesdell tensor or=Fl.0.F¢
or=F1.Gp . F¢
® v

Truesdell rate or=0c=0c—L-0c—o0-L°



Jaumann tensor

Jaumann rate

Cotter-Rivlin tensor

Cotter-Rivlin rate

Dienes tensor

Dienes rate
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oc=F°‘.0-F
60 =F-6c-F
® YAN

cc=0=0+L0c+0-L

ocp=R‘-0-R with F=R.-U
6p=R-op-R

g'D:g:d'—(R-RC)'O'—O"(R'RC)C

5 Linear elastic material

For linear elastic material behavior the stress tensor o is related to the linear strain tensor &
by the constant fourth-order stiffness tensor 4C' :

o=1C:¢

The relevant components of o and € w.r.t. an orthonormal vector basis {€7, €5, €3} are stored
in columns ¢ and €. Note that we use double "waves” to indicate that the columns contain
components of a second-order tensor.

T
g = [011 022 033 012 021 023 032 031 013]

T
g = [e11 €22 €33 €12 €21 €23 €32 €31 €13]

The relation between these columns is given by the 9 x 9 matrix C, which stores the compo-
nents of *C and is referred to as the material stiffness matrix. Note again the use of double
underscore to indicate that the matrix contains components of a fourth-order tensor.

o11
022
033
012
021
023
032
031

L 013

tensor notation o="1C":¢

index notation oij = Cijri€ik ; i,7,k, 01 €{1,2,3}

matrix notation ¢ =C¢

[ Ciin
Cao11

Cs311
Cia11

= | Con
Cas1
C3211
Cs111
L Ci311

Cri22 Crizz Criz1 Ciiiz Crsze Cris Cinz Cusi | [ enn
Co200 C233 C9201 (212 O3z C203 (213 Co231 €92
C3322 (3333 C3321 C3312 C3332 C3323 C3313 Cs331 €33
Cr222 Ch233 Crz21 Cr212 Crazz Cizez3 Ci213 Crast €12
Co122 Co2133 Co121 Co112 Co132 Co1o3 Coniz Corsn €21
Co322 (333 Cazo1 (o312 Cazza Cozaz Co313 Cagsy €23
C3200 C3233 C3201 C3212 C3232 3203 C3213 C3231 €32
C3122 C3133 C3121 Cs112 C3132 C3123 Cs113 Cs131 €31
Ci322 Ci3zz Ciz21 Cizi2 Cizzz Cizes Ciziz Cizst | L €13 |
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The stored energy per unit of volume is :
W:%sz iC:e= [%s: 402{:‘]6:%62 ict e
which implies that *C' is total-symmetric : *C = *C° or equivalently C = CT".
As the stress tensor is symmetric, & = o€, the tensor *C must be left-symmetric :
10 = 40" or equivalently C = CT. As also the strain tensor is symmetric, € = &°, the
constitutive relation can be written with a 6 x 6 stiffness matrix.

[ o11 ] [ Ciin Crize Crizs Crnizt Cinz Crize Criez Criis Cust | [ enn |
022 C2211 C22220 C2233 C221 212 o232 C203 (213 Co231 €92
033 C3311 C33220 C3333 C3321 Cs312 C3332 Cz3z3 C3313 C3331 €33
012 Ci211 Ciz22 Ch233 Ciz21 Cr212 Crazz Cizez Ci213 Crasn €12
oo1 | = | Conn Co122 C2133 Co121 Coriz Cozz Co123 Corrgz Coizn €21
023 C2311 Ca2322 (333 (o321 (312 Cozzz Coza3 C313 Cassy €23
032 C3211 C3220 C333 3201 Cs212 C3232 Cz223 C3213 C3231 €32
031 C3111 C3122 C3133 C3121 C3112 C3132 C3123 C3113 C3131 €31

L 013 | L Ci311 Ci322 Chizzs Cizar Ciziz Cizze Cizaz Ciziz Ciszst | L €13 |

specific energy W = %ng £ — symmetry C= gT
Symmetric stresses

[ o011 ] [ Cr111 Criz2 Crnzz Criozr Criiz Crse Criez Cinz Cust ] [ e
0922 C2211 C2222 2233 C2221 (212 o232 U203 (213 Co231 €92
033 C3311 C33220 C3333 C3321 Cs312 C3332 Cz3z3 C3313 C3331 €33
012 Ci211 Ciza2 Ch233 Ciz21 Cr212 Crazz Cizez Ci213 Crasn €12
oo1 | = | Conn Coiz2 C2133 Cor21 Coriz Cozz Co123 Corrz Coi3n €21
023 Co311 Ca2322 (2333 (o321 (o312 Cozzz Coza3 Co313 Cassy €23
032 C3211 C3220 C333 3201 Cs212 C3232 Cz223 C3013 C3231 €32
031 C3111 C3122 C3133 C3121 C3112 C3132 C3123 C3113 C3131 €31

L 013 L C1311 Ci322 Cizzz Cizo1 Ciziz Cizze Cizaz Ciziz Cizsi | L oeis |

Uij = Uji
S

[ o1 ] [ Cii11 Ciize Cusz Crzi Criiz Cruze Crizs Ciiz Crast | ?2
022 C2211 C2220 Co3z Ca221 Coziz O3z Cozeg Coo13 U231 533
o33 | | Cs311 Cs322 C3333 Cs321 Cz312 Cszzz Czza3 Czziz Csszn 512
o2 | | Cizir Ciazz Ciazs Ciazr Craiz Crazz Ciaez Ciaiz Clos 521
023 Co311 Ca2322 (333 (o321 (312 Cozzz Cozaz (o313 Cassy 523

| 031 | L Cs111 Cs122 Cs133 C3121 Cs112 C132 Cs123 Cs11z Cs131 52?

L €13




Symmetric strains

o11
022
033
012
023
031

011
022
033
012
023

031

Cr1
Co211
C3311
Crann
Ca311
Cs111

[ Cii
Ca211
C3311
Cron
Ca311

| C3111

Cr122
C2222
C3322
C1222
Ca322
C3122

Cri22
C2222
C3322
C1222
Ca322
C3122

Ch133
C9233
C3333
C1233
Ca333
C3133

C1133
C2233
C3333
C1233
Ca333
C3133

Ciz Cuiz
C2213  Co231
Cs313  C3331
Ci213 Cra31
Co313 Ca331
Cs113 C3131

Cri21 Criiz Crsze Chiss

C2221 C2212 O30 U203

C3321 C3312 C3332 C3323

Ci221 Ci212 Cra32 Claos

Ca321 Ca312 Cazzz Caszas

C3121 C3112 C3132 C3123
€ij = Eji

[Cri21 + Ci112]
[Cag21 + Ca212]
[C3321 + C3312]
[C1221 + C1212]
[Ca321 + Ca312]
[C3121 + C3112]

Symmetric material parameters

Ciiz2 + Chios
C2232 + C2203
C3332 + C3323
Cha32 + Cla03
Ca332 + Ca323
C3132 + C3123

[
[
[
[
[
[

[ e S S I b b}

Ci113 + Cri131
C2213 + Ca231
C3313 + Cs331
C1213 + Cr231
C2313 + C2331
C3113 + C3131

[ )
[ ]
[ )
[ ]
[ )
[ ]

€11
€22
€33
€12
€21
€23
€32
€31
€13

68

€11
€22
€33
€12
€23
€31

The components of C' must be determined experimentally, by prescribing strains and measur-
ing stresses and vice versa. It is clear that only the summation of the components in the 4th,
5th and 6th columns can be determined and for that reason, it is assumed that the stiffness
tensor is right-symmetric : C = *C"* or equivalently C= gRT.

011
022
033
012
023

031

Ciin
Ca211
C3311
Cron
Ca311

C3111

Cr122
C2222
C3322
C1222
Ca322
C3122

C1133
C2233
C3333
C1233
Ca333
C3133

[Cri21 + Ci112]
[Cag21 + Ca212]
[C3321 + C3312]
[C1221 + C1212]
[Ca321 + Ca312]
[C3121 + C3112]

Ciiz2 + Chigs
Ca232 + C2203
C3332 + C3323
Cha32 + Cla03
Ca332 + Ca323
C3132 + C3123

[
[
[
[
[
[

[ e e S i b b}

Cijrt = Cijik

Ci113 + Cri31
C2213 + Ca231
C3313 + Cs331
C1213 + Cr231
C2313 + C2331
C3113 + C3131

[ )
[ ]
[ )
[ ]
[ )
[ ]

€11
€22
€33
€12
€23
€31
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o11 Ciiir Crze Crss 2C1121 2Ch32 2C1i3 | [ e |
0922 Co211 C2202 C33 2C9201 209030 209213 €22
o33 | _ | Cssir Csszz Clszs 203301 203332 203313 €33
012 Ci211 Chiza2 Chazz 2C1201 2C1232 2C1213 €12
093 Co311 O3z Cozzz 209301 209330 209313 €23
| 031 | C3111 Cs122 Cs133 203121 203132 203113 | | €31

Shear strain

To restore the symmetry of the stiffness matrix, the factor 2 in the last three columns is
swapped to the column with the strain components. The shear components are replaced
by the shear strains : 2e;; = 7;;. This leads to a symmetric stiffness matrix C with 21
independent components. N

o11 [ Ciii1r Cnize Cuss 2Cn2r 2Cns2 2Chs | [ enn |
0922 Co11 Cazon Cozzz 209221 2C2032 209913 €92
o33 | | Cs311 C3322 (3333 203321 2C33320 203313 €33
o12 Ci211 Ciao2 Chazz 2C1221 2C1232 2Ch213 €12
0923 Co311 Cazan Cazzz 202321 2C2330 2C9313 €23
| 031 | C3111 Cs122 C3133 203101 203132 2C3113 | | €31
2ei5 = ij
[ o011 ] [ Ciii1 Chizz Ciizz Chizi Chse Cins | [ enn |
092 Co11 Cazo2 Caa3z (o221 Coo3za Coois €92
033 | | Cs311 Cs322 C3333 C3321 C3332 U313 €33
o12 Ci211 Ci222 Ciazz Chioor Ci2z2 Ciois Y12
0923 Ca311 Cazaa Cazzz Cazar Cazza Chazis Y23
| 031 | C3111 Cs122 C3133 Cs121 C3132 Cs113 | | ¥31

5.1 Material symmetry

Almost all materials have some material symmetry, originating from the micro structure,
which implies that the number of independent material parameters is reduced. The following
names refer to increasing material symmetry and thus to decreasing number of material
parameters :

To reduce the number of elasticity parameters, we assume a coordinate system attached
to the symmetry axes or planes in the material.

monoclinic — orthotropic — quadratic — transversal isotropic — cubic — isotropic
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5.1.1 Triclinic

In a triclinic material there is no symmetry. Therefore there are 21 material parameters to
be determined from independent experimental test setups. This is practically not feasible.

o11 [ Cii11 Ciiz2 Cuzz Crizi Cuze Cras 11
022 Co211 C22220 Co33 Ca221 Cozzaz U013 €22
o33 | | CUs311 C3322 C3333 C3321 C3332 C3313 €33
o2 | | Cizin Ciazz Ciazs Crazr Craz2 Chiais 712
023 C2311 C2322 C23z3 (o321 (a3 Cos13 V23

| 031 | C3111 C3122 C3133 Cs121 C3132 Cs113 ] [ 31 |

21  material parameters

5.1.2 Monoclinic

In each material point of a monoclinic material there is one symmetry plane, which we take
here to be the 12-plane. Strain components w.r.t. two vector bases ¢ = [¢] & é3]7 and
¢ =1e1 & — é'g]T must result in the same stresses. It can be proved that all components of
the stiffness matrix, with an odd total of the index 3, must be zero. This implies :

Ca311 = Cazaa = Caszz = Cazor = C3111 = C3122 = C3133 = C3121 = 0

A monoclinic material is characterized by 13 material parameters. In the figure the directions
with equal properties are indicated with an equal number of lines.
Monoclinic symmetry is found in e.g. gypsum (CaS042H50).

3

[ Ci11 Ciiz2 Cusz Crar O 0
Coo11 C2220 Cogzz (221 0 0
Cs311 C332 Cszzz C3321 0 0
5 Cio11 Ciazz Chiazs Cron 0 0
0 0 0 0 O3z (o313
0 0 0 0  Cz132 C3113 |

1/ ‘ 13  material parameters

Fig. 5.47 : One symmetry plane for
monoclinic material symmetry
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5.1.3 Orthotropic

In a point of an orthotropic material there are three symmetry planes which are perpendicular.
We choose them here to coincide with the Cartesian coordinate planes. In addition to the
implications for monoclinic symmetry, we can add the requirements

Ci112 = Ca212 = C3312 = C3123 = 0

An orthotropic material is characterized by 9 material parameters. In the stiffness matrix,
they are now indicated as A, B,C,Q, R, S, K, L and M.

Orthotropic symmetry is found in orthorhombic crystals (e.g. cementite, FesC) and in
composites with fibers in three perpendicular directions.

3

[A Q@ R 0 0 0 ]
Q@ B S 0 0 0
O = R S C 0 0 0
) = 0O 0 0 K 0 0
0O 0 0 0 L 0
L0 0 0 0 0 M |
! / 9  material parameters

Fig. 5.48 : Three symmetry planes
for orthotropic material symmetry

5.1.4 Quadratic

If in an orthotropic material the properties in two of the three symmetry planes are the same,
the material is referred to as quadratic. Here we assume the behavior to be identical in the
€1- and the é5-directions, however there is no isotropy in the 12-plane. This implies : A = B,
S = Rand M = L. Only 6 material parameters are needed to describe the mechanical
material behavior.

Quadratic symmetry is found in tetragonal crystals e.g. TiOy and white tin Sng.
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A Q R 0 0 0
Q A R 0 0 O
C— R R C 0 0 0
= 0 0 0 K 0 0
2 0O 0 0 0O L O
L0 0 0 0 0 L |
1 / 6  material parameters

Fig. 5.49 : Quadratic material

5.1.5 Transversal isotropic

When the material behavior in the 12-plane is isotropic, an additional relation between pa-
rameters can be deduced. To do this, we consider a pure shear deformation in the 12-plane,
where a shear stress 7 leads to a shear . The principal stress and strain directions coincide
due to the isotropic behavior in the plane. In the principal directions the relation between
principal stresses and strains follow from the material stiffness matrix.

g:[an 012}:[0 T:| s det(g— o) =0 — {01:7-
021 022 T 0 Oy = —T
€11 €12 0 37 1= 37
g = = 1 2 — det(g—sl):() — 21
€21 €22 37 O g2 = —37
—

o1 | A Q €1 . 01 =Ae1 + Qo= 1= Ky
a &9 00 =Qe1+ Aeco=—T7=—K~

(A—Q)(e1 —e2) = 2K~
S

1 . —
€1 =37 i &17= 3%

Examples of transversal isotropy are found in hexagonal crystals (CHP, Zn, Mg, Ti) and
honeycomb composites. The material behavior of these materials can be described with 5
material parameters.
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I
Il

coo 0Ol x
coXo oo

oNOoc o oo
No oo oo

A K=4-0)

‘ 5 material parameters

L

Fig. 5.50 : Transversal material

5.1.6 Cubic

In the three perpendicular material directions the material properties are the same. In the
symmetry planes there is no isotropic behavior. Only 3 material parameters remain.

Examples of cubic symmetry are found in BCC and FCC crystals (e.g. in Ag, Cu, Au,
Fe, NaCl).

AQ Q 000

Q A Q 00 0

c_|Q@ @A o000

= 00 0 L 00

00 0 0L 0

2 0 0 0 0 0 L |
L#3(A-Q)

1

Fig. 5.51 : Cubic material

‘ 3  material parameters

5.1.7 Isotropic

In all three directions the properties are the same and in each plane the properties are
isotropic. Only 2 material parameters remain.

Isotropic material behavior is found for materials having a microstructure, which is suffi-
ciently randomly oriented and distributed on a very small scale. This applies to metals with a
randomly oriented polycrystalline structure, ceramics with a random granular structure and
composites with random fiber/particle orientation.
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AQ Q 0 0 0
Q A Q 0 0 0
c_lQ @@ 4000
= 00 0L O O
00 0 O0TL O
0 0 0 0 0 L |
L=3A-Q)

1

Fig. 5.52 : Isotropic material

‘ 2 material parameters

Engineering parameters

In engineering practice the linear elastic material behavior is characterized by Young’s moduli,
shear moduli and Poisson ratios. They have to be measured in tensile and shear experiments.
In this section these parameters are introduced for an isotropic material.

For orthotropic and transversal isotropic material, the stiffness and compliance matrices,
expressed in engineering parameters, can be found in appendix [Al

To express the material constants A, () and L in the parameters F, v and G, two simple
tests are considered : a tensile test along the 1-axis and a shear test in the 13-plane.

In a tensile test the contraction strain €4 and the axial stress o are related to the axial strain
e. The expressions for A, Q and L result after some simple mathematics.

o11 A Q@ @ 0 0 O €11
0929 Q A Q 0 0 O €929
033 o Q Q A 0 0 O £33 . 1 -
ool =10 0 0L 0 0] e with L =3(4-@Q)
0923 0 0 0 0 L O Y23

Losi ] LO 0 0 0 0 L | [y |

e'=[c e ea 00 0];¢"=[c 0000 0]

o= Ae +2Q¢eq 2 _ 902
0=Qe+ (A+Q)eq — eq=— @ € HJ:A +ij2Q € N
A+Q
g4 = —VE ; o= Fe
. (1-v)E B vE B
A=ma-m Taron-z e
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When we analyze a shear test, the relation between the shear strain v and the shear stress
T is given by the shear modulus G. For isotropic material G is a function of £ and v. For
non-isotropic materials, the shear moduli are independent parameters.

011 A Q Q 0 0 O €11
0922 Q A Q 0 0 O €22
J33 o Q Q A 0 0 O €33 . _ 1 .
o | 0 0 0 L 0 0 Y12 with L =3(4-@Q)
J923 0 0 0 0O L O Y23

Loan ] L0 0 0 0 0 L[y

For an isotropic material, a hydrostatic stress will only result in volume change. The relation
between the volume strain and the hydrostatic stress is given by the bulk modulus K, which
is a function of E and v.

011 A Q Q 0 0 O €11
0922 Q A Q 0 0 O €922
J33 o Q Q A 0 0 O €33 . _ 1 .
o | 0 0 0 L 0 0 Y12 with L =3(4-@Q)
g923 0 0 0 0O L O Y23

Loan ] L0 0 0 0 0 L[y

ET:[EH €929 £33 0 O 0]

1—2v
E
3(1 —2v)

1
=~ 75 (o1 + 022 + 033) = e str(o)

J—1= ey +e9g +e33 = (011 + 022 + 033)

The compliance and stiffness matrices for isotropic material can now be fully written in terms
of the Young’s modulus ad the Poisson’s ratio.

[ e11 ] 1 v —v 0 0 0 1T o11 ]
£99 -v 1 —v 0 0 0 099
£33 N 1 -V —U 1 0 0 0 J33
y2 | E| 0 0 0 21+v) 0 0 012
Y23 0 0 0 0 2(1 + V) 0 093

L Y31 | 0 0 0 0 0 2(1—1—1/)_ L 031 |
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011 1—v v v 0 0 0 €11
099 v 1—v v 0 0 0 £99
o3 | _ v v 1—v 0 0 0 €33
o1 | 0 0 0 i(1-2v) 0 0 Y12
023 0 0 0 0 (1 —2v) 0 Y23
| 031 | . 0 0 0 0 0 %(1—2y) 1L v |
with o= £

(I+v)(1-2v)

Besides Young’s modulus, shear modulus, bulk modulus and Poisson ratio in some formula-
tions the so-called Lamé coefficients A and p are used, where p = G and A is a function of F
and v. The next tables list the relations between all these parameters.

E.v A\ G K,G E.G E, K
(2G+3)0)G 9IKG
E E pexe] 3K+G E E
v v A 3K—2G E—2G 3K—E
20rG) | 2B3K+G) 2G 6K
E 3KE
G Nit) G G G SK—F
E 3A+2G EG
K1 3uoam 3 K 33G—FE) K
A | ——Br by 3K—2G G(E—-2G) | 3K(3K—E)
(I+v)(1-2v) 3 3G-E 9K—E
E X G,v AV AK K,v
A1+r)(1-2v) | 9K(K—)
E E 2G(1 + v) | A2 | IKUEA) | 35 (1 — 20)
—E-Ay/(E+X)2+8)2 A\
v o v v 3K v
G | DB/ BA-EP+8NE G A(1—2v) 3(K=)) 3K (1-2v)
4 2v 2 2(1+v)
E—3\+1/(E-3))2—12AE | 2G(1+v) A(1+v)
K 6 3(1—2:) e K K
2G 3K
A A S A A T+

5.2 Isotropic material tensors

Isotropic linear elastic material behavior is characterized by only two independent material
constants, for which we can choose Young’s modulus E and Poisson’s ratio v. The isotropic
material law can be written in tensorial form, where o is related to € with a fourth-order
material stiffness tensor *C.
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In column/matrix notation the strain components are related to the stress components by a
6 x 6 compliance matrix. Inversion leads to the 6 x 6 stiffness matrix, which relates strain
components to stress components. It should be noted that shear strains are denoted as ¢;;
and not as ;;, as was done before.

The stiffness matrix is written as the sum of two matrices, which can then be written in
tensorial form.

€11 1 —v —v 0 0 0 011
€99 -v 1 —v 0 0 0 099
£33 . 1 -V —U 1 0 0 0 J33
ce2 | E 0 0 0 1+v 0 0 019
€93 0 0 0 0 14+v 0 093

| €31 | | O 0 0 0 0 1+v | | 031 |

[ o171 ] [ 1—v v v 0 0 0 77T e
099 v 1—v v 0 0 0 €99
o33 | _ o v v 1—v 0 0 0 €33
012 0 0 0 1—2v 0 0 £12
0923 0 0 0 0 1—2v 0 £923

| 031 | | O 0 0 0 0 1-2v | | e31 |

with o= E

(1+v)(1-2v)

The stiffness matrix is rewritten as the sum of two matrices, the second of which is a unit
matrix. Also the first one can be reduced to a matrix with ones and zeros only.

[ (1—-v) v v 00 i
o (1 —1/21/) ((11—_2;)) (1 —1/21/) . e T
722 p | 0w -2 1-2) “22
733 v v (1-v) 000 €33
o | (+v) | T T-—2) (-2 £12
723 0 0 0 1 00 €23
L 731 0 0 0 0 1 0 L&l
0 0 0 00 1]
o ]
Q- , v v 0 0
(1—2v) (1—2v) (1—2v)
v (1—-v) v
-1 0 0
E (1—2v) (1—2v) (1—2v)
v v (1—-v) +
(1+v) (1—2) 1-20) (1-2v) 000
0 0 0 00 0
0 0 0 00 0
I 0 0 0 000
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10000 07| [en

010000 €22

001000 £33

000100 €12

0000710 €23

(00000 1] /|][es ]
11100 0] 100 00 07 | [en
111000 010000 €22
B Ev 111000|, F 001000 €33
I+)1—20)| 0 0 00 0 0 1+v) | 00010 0 €12
000000 000010 €23
(00000 O] (00000 1] |[esn|

Isotropic stiffness tensor

The first matrix is the matrix representation of the fourth-order tensor I1. The second matrix
is the representation of the symmetric fourth-order tensor *I°. The resulting fourth-order
material stiffness tensor *C contains two material constants ¢y and ¢;. It is observed that
co = X and ¢; = 2u, where A and p are the Lamé coefficients introduced earlier.

i [(Hai?—zw] Ter(e) + Ll%} :
— Qtr(e) I +2Le

=cotr(e) I +c1e

= [coIT +,*T’] : € with 41" = 3(*T+ ‘1)

=14C:¢

Stiffness and compliance tensor

h

The strain and stress tensors can both be written as the sum of an hydrostatic - (.)"” - and a

deviatoric - (.)¢ - part. Doing so, the stress-strain relation can be easily inverted.



o = C:¢
= [eodI+c,'T") : ¢
with  41° =1 (41 4 41"%)
= cotr(e)I + c1e
= cotr(e)] + ¢ {Ed + %tr(s)I}
= (co+ zc1)tr(e)I + cre?

= (3co + c1)3tr(e)T + ¢y

= (3co+ cl)sh + ce?
— ol 4ol
vE
R R T R
o Co . 14
o= (300 + 01)01 - FE

——=q
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eh +ed

1 1
— g4+ = o
3co+ 1 a

1 1 1
— =t I+ — — 1 I
S0 1o 3 r(o)I + o {o — 3tr(o)T}
Co 1
- tr(e) I+ — o
(3CO+01)01 ( ) c1
1
[—CioII—i——‘lIS ro
(3CO+01)01 c1
['YOII—|—714IS] to
1S o
E
= =2L
“ 14+v
1 1+v 1
= — = :—l
it 1 B 2

The tensors can be written in components with respect to an orthonormal vector basis. This
results in the relation between the stress and strain components, given below in index notation,
where summation over equal indices is required (Einstein’s convention).

o = [cOII+cl4IS]:€

oij = [co0ij0m + 13 (Sudjr + 0iwdj)] e €ij

= co0ijEkk + C1€ij

co
= <5ij + 5z‘j5kkz>
1

_ E E“+ v 5..5
I TPV A I e

Specific elastic energy

1,
[—Ciozu— 41} -
(300 —1—01)01 c1

Co
— ;0
|: (3CO+01)01 3Okl

1
o 3 (0udjn + 5ik5jl)] Tk

Co 5 i 1
U =g
(300 + 01)01 WO kk c1 K

_ 1 g 0 5
N C1 ij 3Co+61 1Tk

1+v v
= T Oij — H—U(sz'jgkk

The elastically stored energy per unit of volume (= the specific elastic energy) can be written
as the sum of an hydrostatic and a deviatoric part. The hydrostatic part represents the
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specific energy associated with volume change. The deviatoric part indicates the specific

energy needed for shape change.

W=lo:e=30:%S:0=21c"+0%:"S:(c" +0%

N

=" +0%): (WII+m 4IS) (o +o9)
YoI[I : ah] =0l [I:13tr(0)] =0l [tr(o)] = 3y
YI[I : O'd] =91 [tr(o'd)} =0 I[0] =0

(0" + %) : (30" + 1" + 7107
ol oh = str(o)I : gtr(o)I = %tr2(a)(3) = %tr2(o')

ol ol = ttr(o)I : [0 — ttr(o)I] = %trz(o') - %trz(a) =0

|
D=

= o+ 1) #80) + (b 0%

_ %1—21/ (o) +
3E

N[
&

= wh 4w

5.3 Thermo-elasticity

A temperature change AT of an unrestrained material invokes deformation. The total strain
results from both mechanical and thermal effects and when deformations are small the total
strain € can be written as the sum of mechanical strains €,, and thermal strains ep. The
thermal strains are related to the temperature change AT by the coefficient of thermal ex-
pansion tensor A.

The stresses in terms of strains are derived by inversion of the compliance matrix S. For
thermally isotropic materials only the linear coefficient of thermal expansion « is relevant.

Anisotropic
e=¢emter=12S:0+AAT — §:§m+§T:§g+éAT
o="C:(e— AAT) — g=C(s—AAT)
Isotropic
e=18:0+aATI — z;::ég—l—aATg
o="%C:(e-aATI) — g=C(e—aATI)

For orthotropic material, this can be written in full matrix notation.
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€11 a q r 0O 0 O 011 1
€99 g b s 0 0 O 099 1
£33 r s c¢c 0 0 O J33 1
el =100 0k o0 0]]on| T o0
Y23 00 0 0 I 0 J923 0

| Y31 | _00000m__031_ _O_

-011- A Q R 0 0 0 T -611- -A+Q+R-
0929 Q B S 0 0 0 €92 Q+B+S
033 _ R S C 0 0 0 €33 QAT R+S+C
012 0 0 0 K 0 0 Y12 0
0923 0 0 0 0 L 0 Y23 0

L 031 | | 0 0 0 0 0 M 1 L 731 | | 0 |

5.4 Planar deformation

In many cases the state of strain or stress is planar. Both for plane strain and for plane
stress, only strains and stresses in a plane are related by the material law. Here we assume
that this plane is the 12-plane. For plane strain we than have e33 = 93 = 31 = 0, and for
plane stress o033 = 093 = 031 = 0. The material law for these planar situations can be derived
from the general three-dimensional stress-strain relation, either from the stiffness matrix C
or from the compliance matrix 5. Here the compliance and stiffness matrices are derived
for the general orthotropic material. First the isothermal case is considered, subsequently
planar relations are derived for thermo-elasticity. For cases with more material symmetry,
the planar stress-strain relations can be simplified accordingly. The corresponding stiffness
and compliance matrices can be found in appendix[Al where they are specified in engineering
constants.

5.4.1 Plane strain

For a plane strain state with €33 = 723 = v31 = 0, the stress o33 can be expressed in the
planar strains €17 and €99. The material stiffness matrix ge can be extracted directly from
C'. The material compliance matrix éa has to be derived by inversion.

e33 =23 =731 =0 — 033 = Rey1 + Sea

o11 A Q O €11 A Q. 0 ] [en
g=|o02 |=|Q B 0 €92 =| Q: B 0 g2 | =C ¢
| 012 | 0 0 K 12 L 0 0 K || me
[ e ] 1 _BQ _AQ 8 o11 [a: ¢ 0] [ on
E =1 €22 = m AB — Q2 02 |=1¢ b O 022 = éEQ
712 0 0o —= 012 0 0 k o12

L J K L L
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We can derive by substitution :

o5 = gp7—gp [(BR — QS)ou + (A4S — QR)ow|

Because the components of the three-dimensional compliance matrix S are most conveniently
expressed in Young’s moduli, Poisson’s ratios and shear moduli, this matrix is a good starting
point to derive the planar matrices for specific cases. The plane strain stiffness matrix ga
must then be determined by inversion.

r S

€33 = 0=1r011 + 5022 +co33 — 033 = —So1 = o2
€11 a q 0 o1l r . o1
e=|¢e2|=|q b 0 oo | — | s [ s 0 ] 022
Y12 0 0 k 012 0 012
ac—1% qc—rs 0 011 a: ¢ 0 o11 ]
=—| gc—sr be—s> 0 o9 | =1 ¢ b 0 o9 | = éag
‘ 0 0 ke 012 0 0 &k o12 |
1 2 o _
o1 a: g 0 €11 1 be—s qc + 7;8 8 11
o=|o0m |=|¢ b O em | = | et oaemrm D €22
012 0 0 &k Y12 5 0 0 ?8 1

with A, = abe — as® — br? — cq® + 2qrs

A Q- O €11
= Qa Ba 0 €22 = gag
0 0 K €12

We can now derive by substitution :
1
033 = — %~ [(br — ¢s)e11 + (as — qr)eas]

s

5.4.2 Plane stress

For the plane stress state, with o33 = 093 = 031 = 0, the two-dimensional material law can
be easily derived from the three-dimensional compliance matrix S The strain €33 can be
directly expressed in 011 and o95. The material stiffness matrix has t to be derived by inversion.

033 =093 =031 =0 — €33 =701+ 022
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€11 a q 0 o11 s Gs O 011
e=|¢ex2 |=|q b 0 022 =| %% bs O op | =90
L 712 ] 0 0 k 012 0 0 k | 012
[ o1 ] 1 b —q 8 €11 [ A; Q, 0 ][ en
g=| o2 | = 4o 9 g2 |=| Qs By 0 g2 | =C ¢
ab — g2 ab—q =0

| 012 | 0 0 7 712 L 0 0 K | [ mne

We can derive by substitution :
£33 = o [(br — gs)e11 + (as — qr)eas]
3= p_ o qs)e11 qr)e22
The same relations can be derived from the three-dimensional stiffness matrix g
033 =0 = Reqg + Segg + Cezz — €33 = —ofn T e

o11 A Q O €11 R | R S €11
g=|o» |=|Q B 0 g | — | S C C 0 €22

012 0 0 K Y12 0 B 712

1 AC — R2 QC — RS 0 €11 AU QU 0 €11
= 6 QC - SR BC - 52 0 £922 = Qo’ Bo’ 0 £922 = ggg
0 0 KC Y12 0 0 K Y12

1 Ay Q, 077 on . [ BC-5* -QC+RS 0 o1
€= €99 =| Q, B, 0 099 = Z —-QC+ RS AC — R2 0 0922

Y12 0 0 K 012 ¢ 0 0 % 012

with A, = ABC — AS? — BR?> — CQ?+2QRS
ax qo 0
= 4o b(r 0 = :UQ-
0 0 &k

5.4.3 Plane strain thermo-elastic

For thermo-elastic material behavior, the plane strain relations can be derived straightfor-

wardly.

r

033 = Req1 + Segg — Oé(R + 5+ O) AT (from g)
:——0'11—20'22—%AT (from é)

C
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_0'11_ _A Q 0_ €11 A+Q+R
099 = Q B 0 £99 —aAT B—I—Q—I—S
| 012 | | 0 0 K | [ 72 0
[ 11 | A Q 0] o11 A+Q+R
€92 =@ B 0 099 | +aAT | B+Q+S
| Y12 L 0 0 K i g12 0
[ a: ¢ 0 J11 1+¢S+aR
= g b 0 099 | +aAT | 1+ ¢ R+ bS5
L 0 0 k g12 0

5.4.4 Plane stress thermo-elastic

For plane stress the thermo-elastic stress-strain relations can be derived again.

€33 = ro11 + 8022 + AT (from S)

R S 1
:—6511—6522+6(R+S+C’)aAT (from C)

[ e ] [a ¢ 0] [ on 1
€92 =1q b 0 099 | +aAT | 1
| Y12 | | 0 0 k| | o2 0
[ o ] Ca g 01 ([en ] [ 1
g929 = q b 0 £99 —aAT 1 }
L 012 ] | 0 0 k i 712 | 0
[ Aa Qa 0 [ €11 [ Aa +Qa
= Qa’ B, 0 £99 —aAT | By + Qg
. 0 0 K | Y12 | i 0

5.4.5 Plane strain/stress

In general we can write the stiffness and compliance matrix for planar deformation as a 3 x 3
matrix with components, which are specified for plane strain (p = €) or plane stress (p = o).

Ap @p 0 Op1 ap ¢ 0 Op1
gp =|Qp By 0 | —aAT | Op ; ép = q by 0 |+aAT | 0
0 0 K 0 0 0 k 0
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6 Elastic limit criteria

Loading of a material body causes deformation of the structure and, consequently, strains
and stresses in the material. When either strains or stresses (or both combined) become too
large, the material will be damaged, which means that irreversible microstructural changes
will result. The structural and/or functional requirements of the structure or product will be
hampered, which is referred to as failure.

Their are several failure modes, listed in the table below, each of them associated with
a failure mechanism. In the following we will only consider plastic yielding. When the stress
state exceeds the yield limit, the material behavior will not be elastic any longer. Irreversible
microstructural changes (crystallographic slip in metals) will cause permanent (= plastic)
deformation.

failure mode mechanism

plastic yielding crystallographic slip (metals)

brittle fracture (sudden) breakage of bonds

progressive damage micro-cracks — growth — coalescence
fatigue damage/fracture under cyclic loading
dynamic failure vibration — resonance

thermal failure creep / melting

elastic instabilities buckling — plastic deformation

6.1 Yield function

In a one-dimensional stress state (tensile test), yielding will occur when the absolute value
of the stress o reaches the initial yield stress o,9. This can be tested with a yield criterion,
where a yield function f is used. When f < 0 the material behaves elastically and when
f = 0 yielding occurs. Values f > 0 cannot be reached.

flo)=0%— 050 =0 — glo)=0%= 050 = g = limit in tensile test
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. _O-yo

Fig. 6.53 : Tensile curve with initial yield stress

In a three-dimensional stress space, the yield criterion represents a yield surface. For elastic
behavior (f < 0) the stress state is located inside the yield surface and for f = 0, the
stress state is on the yield surface. Because f > 0 cannot be realized, stress states outside
the yield surface can not exist. For isotropic material behavior, the yield function can be
expressed in the principal stresses o1, 09 and o3. It can be visualized as a yield surface in the
three-dimensional principal stress space.

fle)=0 — g(o) =g : yield surface in 6D stress space

flo1,09,03) =0 — g(o1,09,03) =¢: : yield surface in 3D principal stress space

03

o1~

Fig. 6.54 : Yield surface in three-dimensional principal stress space

6.2 Principal stress space

The three-dimensional stress space is associated with a material point and has three axes, one
for each principal stress value in that point. In the origin of the three-dimensional principal
stress space, where 01 = 09 = o3 = 0, three orthonormal vectors {é},é5,€3} constitute a
vector base. The stress state in the material point is characterized by the principal stresses
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and thus by a point in stress space with ”coordinates” o1, o9 and o3. This point can also be
identified with a vector &, having components o1, o2 and o3 with respect to the vector base
{€1,ées,¢5}.

The hydrostatic axis, where o1 = 092 = o3 can be identified with a unit vector €.
Perpendicular to €, in the €)€,-plane a unit vector & can be defined. Subsequently the unit
vector €, is defined perpendicular to the €),¢e;-plane.

The vectors €, and €, span the so-called II-plane perpendicular to the hydrostatic axis.
Vectors €),, €, and €, constitute a orthonormal vector base. A random unit vector €;(¢) in

the II-plane can be expressed in ¢€; and é;..

g
53 é,p €t (¢) B
. €
€2 o o r
& €
Er

Fig. 6.55 : Principal stress space

=3iV3(@ +é+é;3) with [l =1

5oL

hydrostatic axis

plane L hydrostatic axis
&y =& — (8- @)8 = &1 — §(&1 + & + &) = §(2¢1 — & — &)
&y =8y k8 = 2V3(E1 + & + &3) * :V6(281 — & — &) = $V/2(&2 — &)

vector in IT-plane €1(¢) = cos(p)ey — sin(@)é,

A stress state can be represented by a vector in the principal stress space. This vector can be
written as the sum of a vector along the hydrostatic axis and a vector in the II-plane. These
vectors are referred to as the hydrostatic and the deviatoric part of the stress vector.

Qu

= 01€1 + 0263 + 0383 = & + &

7" = (¢-8,))8, = 0”&, = 1V3(01 + 02 + 03)&, = V3o&,

ot = %\/3(01 + 02+ 03)

=d—(d- gp)gp

= 0161 + 02€2 + 0363 — %\/5(01 + o9 + 03)%\/3(51 + é + €3)
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= 016) + 026> + 0385 — 3(01€1 + 0281 + 03€1 + 018 + 0262 + 0362 + 0183 + 023 + 03€3)
= %{(20‘1 — 09 — 0‘3)51 + (—0'1 + 209 — 0'3)52 + (—0'1 — 09 + 20‘3)53}
ot = ||| = VT -5

= 3\/(201 — 02 — 03)2 + (—01 + 202 — 03)2 + (—01 — 02 + 203)?

_ 2/ 2 2 2
= \/§(01 + 05+ 05 — 0102 — 0203 — 03071)

Because the stress vector in the principal stress space can also be written as the sum of three
vectors along the base vectors €}, € and &, the principal stresses can be expressed in ¢” and

h 151 = oM, + 0% (o)
h

a
= o"&, + 0¥{cos(¢)€, — sin(p)é, }
1
ol

= {3V3o" + 3V6 0% cos(¢)}er +
{%\/gah — 1 6% cos(¢) — %\/50‘1 sin(¢)}és +
{%\/gah -3 60 cos(¢) + 3 20%sin(¢)}és

= 0'151 + 0'252 + 0'353

6.3 Yield criteria

In the following sections, various yield criteria are presented. Each of them starts from a
hypothesis, stating when the material will yield. Such a hypothesis is based on experimental
observation and is valid for a specific (class of ) material(s). The yield criteria can be visualized
in several stress spaces:

e the two-dimensional (o7, 092)-space for plane stress states with o3 = 0,
e the three-dimensional (o1, 09, 03)-space,
e the Il-plane and

e the or-plane, where Mohr’s circles are used.

6.3.1 Maximum stress/strain

The maximum stress/strain criterion states that

yielding occurs when one of the stress/strain components exceeds a limit value.

This criterion is used for orthotropic materials.

Oij = Omaz | €ij =€maz 3 {67} =1{1,2,3} (orthotropic materials)
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6.3.2 Rankine

The maximum principal stress (or Rankine) criterion states that

yielding occurs when the maximum principal stress reaches a limit value.

The Rankine criterion is used for brittle materials like cast iron. At failure these materials
show cleavage fracture.

|Omaz| = max(|o;| ; i =1,2,3) = Omaat = oyo(brittle materials; cast iron)

The figure shows the yield surface in the principal stress space for a plane stress state with
o3 = 0.
In the three-dimensional stress space the yield surface is a cube with side-length 200.
In the (o, 7)-space the Rankine criterion is visualized by to limits, which can not be
exceeded by the absolute maximum of the principal stress.

02 03

01

I e R AR

T

01‘/--'::":

Fig. 6.56 : Rankine yield surface in Fig. 6.57 : Rankine yield surface in
two-dimensional principal stress space  three-dimensional principal stress space

—0y0 0 090

Fig. 6.58 : Rankin yield limits in (o, T)-space

6.3.3 De Saint Venant

The maximum principal strain (or De Saint Venant) criterion states that

yielding occurs when the maximum principal strain reaches a limit value.
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From a tensile experiment this limit value appears to be the ratio of uni-axial yield stress and
Young’s modulus.
For o1 > 09 > 03, the maximum principal strain can be calculated from Hooke’s law
and its limit value can be expressed in the initial yield value o,, and Young’s modulus E.
1 v v 040

512501—502—503: B

— 01 — V02 — V03 = 0yo

For other sequences of the principal stresses, relations are similar and can be used to construct
the yield curve/surface in 2D /3D principal stress space.
Oy0

Emaz = Mmax(|&;| ;3 1 =1,2,3) = €maaz, = €40 = =

02

09 — VO = Ty

01 — Vo9 = Uyo

Fig. 6.59 : Saint-Venant’s yield curve in two-dimensional principal stress space

6.3.4 Tresca
The Tresca criterion (Tresca, Coulomb, Mohr, Guest (1864)) states that

yielding occurs when the maximum shear stress reaches a limit value.

In a tensile test the limit value for the shear stress appears to be half the uni-axial yield stress.

_ 1 _ _ 1 — _ _
Tmax = §(Jmam - Umz'n) = Tmaz,t = 30y0 = OTR = Omax — Omin = Oy0

Using Mohr’s circles, it is easily seen how the maximum shear stress can be expressed in the
maximum and minimum principal stresses.

For the plane stress case (o3 = 0) the yield curve in the oj09-plane can be constructed
using Mohr’s circles. When both principal stresses are positive numbers, the yielding occurs
when the largest reaches the one-dimensional yield stress o,9. When o is positive (= tensile
stress), compression in the perpendicular direction, so a negative o9, implies that o1 must
decrease to remain at the yield limit. Using Mohr’s circles, this can easily be observed.
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09 02
01 = 0y0
01 =0
()] :O'y()
o 02=0
01 = 0y0 o1
02 = —0y0
\_J 7 -
02 o1

Fig. 6.60 : Tresca yield curve in two-dimensional principal stress space

Adding an extra hydrostatic stress state implies a translation in the three-dimensional prin-

cipal stress space
{01702703} - {01+6702+6702+C}

i.e. atranslation parallel to the hydrostatic axis where 01 = 02 = 3. This will never result in
yielding or more plastic deformation, so the yield surface is a cylinder with its axis coinciding

with (or parallel to) the hydrostatic axis.
In the II-plane, the Tresca criterion is a regular 6-sided polygonal.

01 =09 = 03 o
3

03
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Fig. 6.61 : Tresca yield surface in three-dimensional principal stress space and the II-plane

In the o7-plane the Tresca yield criterion can be visualized with Mohr’s circles.

T

Tmazx

Omin Omax

Fig. 6.62 : Mohr’s circles and Tresca yield limits in (o, T)-space

6.3.5 Von Mises
According to the Von Mises elastic limit criterion (Von Mises, Hubert, Hencky (1918)),

yielding occurs when the specific shape deformation elastic energy reaches a critical
value.

The specific shape deformation energy is also referred to as distortional energy or deviatoric
energy or shear strain energy. It can be derived by splitting up the total specific elastic
energy W into a hydrostatic part W" and a deviatoric part W?. The deviatoric W¢ can be
expressed in o¢ and the hydrostatic W" can be expressed in the mean stress o, = %tr(a).
The deviatoric part can be expressed in the second invariant Jo of the deviatoric stress tensor
and in the principal stresses.

For the tensile test the shape deformation energy W can be expressed in the yield
stress o,0. The Von Mises yield criterion we = Wtd can than be written as oy s = 0,0, where
oy is the equivalent or effective Von Mises stress, a function of all principal stresses. It is
sometimes replaced by the octahedral shear stress 7, = %ﬁ&v M-

we=wg
wi- Lotigio oo 1u20)) (= - L e
1G 7 ITER 2G
1 1
:E(U%+U§+U§)—@(Ul+a2+a3)2
1
:E%{(Ul_02)2+(U2_03)2+(03_01)2}
wd — 11 0)2 + (0—0)2 + (0 o Lagpe Ly,
=33 (o= 0P 0= 07+ (0-0)"} = 37 520" = 5 5 20
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ovM = \/% {(o1 = 02)? 4 (02 — 03)2 + (03 — 01)?} = 0yo

The Von Mises yield criterion can be expressed in Cartesian stress components.

6‘2/M = %ad ol =3J,
3 d_d . d _ 1
= 3tr(¢“¢”) with ¢ =g — gtr(a)l
_3J/2 1 1 2 2 2
=3 {(gam 3Oy — 5022) + 05y T 0t
1 2 2

2 2 2 2 2 2
= (Uxx + Uyy + Uzz) - (Uzzayy + OyyOzz + UZZUII) +2 (ny + Uyz + sz)
_ 2
= JyO

For plane stress (o3 = 0), the yield curve is an ellipse in the ojo9-plane. The length of the

principal axes of the ellipse is \/iayo and \/gayo.

02

01

Fig. 6.63 : Von Mises yield curve in two-dimensional principal stress space

The three-dimensional Von Mises yield criterion is the equation of a cylindrical surface in
three-dimensional principal stress space. Because hydrostatic stress does not influence yield-
ing, the axis of the cylinder coincides with the hydrostatic axis o1 = 09 = 03.

In the II-plane, the Von Mises criterion is a circle with radius \/gayo.



03

2
\/;O'yo

Fig. 6.64 : Von Mises yield surface in three-dimensional principal stress space and the

II-plane

6.3.6 Beltrami-Haigh

According to the elastic limit criterion of Beltrami-Haigh,

yielding occurs when the total specific elastic energy W reaches a critical value.

W =W,

W:Wh+wdzitr2(a)+iad:ad

18K 4G
1 1 2 1 2 2 2
= B—K_@ (O'1+O'2+0'3) +E(0’1+O’2+O’3)
B 1 1 9 I 5 1 5 1 9
We = (18K 12(;)" Te” T3E” T
1 1 2F
2E<18—K_@> (01+02+03)2+E(U%+O’§+O’§):O';O
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The yield criterion contains elastic material parameters and thus depends on the elastic
properties of the material. In three-dimensional principal stress space the yield surface is an
ellipsoid. The longer axis coincides with (or is parallel to) the hydrostatic axis o1 = 09 = 03.
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03

02

01

g1 /

Fig. 6.65 : Beltrami-Haigh yield curve and surface in principal stress space

6.3.7 Mohr-Coulomb

A prominent difference in behavior under tensile and compression loading is seen in much
materials, e.g. concrete, sand, soil and ceramics. In a tensile test such a material may have
a yield stress o,; and in compression a yield stress o, with oy > oy¢. The Mohr-Coulomb
yield criterion states that

yielding occurs when the shear stress reaches a limit value.

For a plane stress state with o3 = 0 the yield contour in the oj0s-plane can be constructed
in the same way as has been done for the Tresca criterion.

The yield surface in the three-dimensional principal stress space is a cone with axis along
the hydrostatic axis.

The intersection with the plane o3 = 0 gives the yield contour for plane stress.

02

Out

Tuc Out o1

g _ o
Out Cuc

Ouc

Fig. 6.66 : Mohr-Coulomb yield curve in two-dimensional principal stress space
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Fig. 6.67 : Mohr-Coulomb yield surface in three-dimensional principal stress space and the
II-plane

6.3.8 Drucker-Prager

For materials with internal friction and maximum adhesion, yielding can be described by the
Drucker-Prager yield criterion. It relates to the Mohr-Coulomb criterion in the same way as
the Von Mises criterion relates to the Tresca criterion.

For a plane stress state with o3 = 0 the Drucker-Prager yield contour in the oj09-plane
is a shifted ellipse.

In three-dimensional principal stress space the Drucker-Prager yield surface is a cone
with circular cross-section.

6sin(¢)  6cos(o) 72
3 — sin(¢) P=3~ sin(¢) ¢ ﬁ}
o1

2 : gd

Fig. 6.68 : Drucker-Prager yield curve in
two-dimenstonal principal stress space
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Fig. 6.69 : Drucker-Prager yield surface in three-dimensional principal stress space and the
II-plane

6.3.9 Other yield criteria

There are many more yield criteria, which are used for specific materials and loading condi-
tions. The criteria of Hill, Hoffman and Tsai-Wu are used for orthotropic materials. In these
criteria, there is a distinction between tensile and compressive stresses and their respective
limit values.

1
parabolic Drucker-Prager (3 Jo+ 3 By Jl) 2 _ o0
1
Buyokozturk (3J2 + \/gﬁffyoﬁ _ 02{}12) 2 _ Ty0
0'2 011022 0'2 g
Hill Z11 922 | 912
' X2 xy Ty:lg2

Hoffman

11 (Lo (Y (A

X, x)™M\y ) \xx )T\, ) 7

1 1
<§> 0ty — <m> 011022 =0

Tsai-Wu

1IN (LN 1N L (1
X, X)) T\y v \xx )T ) 72

1
<§> 0%2 + 2F12 011022 = 0
1 1

XiXe YiYe

with  FZ >
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6.4 Examples

Equivalent Von Mises stress

The stress state in a point is represented by the next Cauchy stress tensor :

- = —»—»)

o = 30€1€] — 0€€y — 20€3€3 —l—U(el 2 + e2e1

The Cauchy stress matrix is

30 o 0
o= c —o 0
0 0 —20

The Von Mises equivalent stress is defined as

TVM = \/%o-d cod = \/%tr(ad cod) = \/%tr(gdgd)

The trace of the matrix product is calculated first, using the average stress o,, = %tr(g).

dd)

tr(c®c tr(lc — o) [ — o)) =tr(co — 20,1 + 07271[) =tr(co) — 60, + 30,271

2 2 2 2 2 2 2 2 2
011 +0'22 +0'33 + 20’12 + 20’23 + 20’13 — §O'1]_ — 30’22 — §O'33 +

12 1.2 ;1.2 ;2 2 2
5011 T 5022 + 3033 + 5011022 + 5022033 + 5033011
Substitution of the given values for the stress components leads to

tr(oc?) = 1602 — %y =2402 — Gyy =2V60

Equivalent Von Mises and Tresca stresses

The Cauchy stress matrix for a stress state is

S}

Il
S 3 9
S 9 3
qQ o o

with all component values positive.

The Tresca yield criterion states that yielding will occur when the maximum shear stress
reaches a limit value, which is determined in a tensile experiment. The equivalent Tresca
stress is two times this maximum shear stress.

OTR = 2Tmaz = Omaz — Omin

The limit value is the one-dimensional yield stress o,9. To calulate 67, we need the prinipal
stresses, which can be determined by requiring the matrix ¢ — s to be singular.
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o—s T 0
det(o — sI) = det T o—s 0 =0 —
0 0 o—35

(c—5P—72(c—5)=0 — (0—8){(c—s2-71=0 —
(c—s)(c—s+T1)(c—s—7)=0 —

01l =0maz =0+T | 02=0 ; 03=0min=0—T
The equivalent Tresca stress is
OTR = 2T
so yielding according to Tresca will occur when

1
T =730y

The equivalent Von Mises stress is expressed in the principal stresses :

ovar = /(o1 — 02) + (02 — 03)2 + (03 — 01)2}
and can be calculated by substitution,
ovy = V312 = \/gT

Yielding according to Von Mises will occur when the equivalent stress reaches a limit value,
the one-dimensional yield stress o,, which results in

T = %\/gayo
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A Stiffness and compliance matrices

In chapter 77 the three-dimensional stiffness and compliance matrices have been derived for
various materials. Increasing microstructural lattice symmetry gave rise to a reduction of
the number of material constants. Starting from triclinic with no symmetry and character-
ized by 21 material constants, increased symmetry was seen for monoclinic (13 constants),
orthotropic (9), quadratic (6), transversal isotropic (5), cubic (3) and finally, isotropic, with
only 2 material constants.

In this appendix, we again present the material matrices for orthotropic, transversal
isotropic and fully isotropic material. The material constants will be expressed in engineering
constants, where we choose Young’s moduli, Poisson’s ratios and shear moduli.

In many engineering problems, the state of strain or stress is planar. Both for plane
strain and plane stress, only the strain and stress components in a plane have to be related
through a material law. Here we assume that this plane is the 12-plane. For plane strain
we than have €33 = 93 = 31 = 0, and for plane stress o33 = 093 = 031 = 0. The mate-
rial law for these planar situations can be derived from the linear elastic three-dimensional
stress-strain relation. This is done, first for the general orthotropic material law. The result
is subsequently specified in engineering parameters for orthotropic, transversal isotropic and
fully isotropic material.

A.1 General orthotropic material law

The general orthotropic material law is expressed by the stiffness matrix C' and/or its inverse,
the compliance matrix S.

011 A Q R 0 0 0 €11
0922 Q B S 0 0 0 £99
o = 033 _ R S C 0 0 0 £33 —Ce
- J12 0O 0 0 K 0 0 Y12 ="
0923 0 0 0 0 L 0 Y23
| 031 | 0 0 0 0 0 M 1 L 731
[ 11 ] [a g 0 0 0] [ on ]
€92 q b s 0 0 O 022
€33 r s ¢ 0 0 O 033 1
STy | Tl0o00 k0 0 op | € 2782
Y23 00 0 0 1 0 0923
| 731 ] L 00 0 0 0 m 1 L o031 |

The inverse of C' can be expresses in its components.



[ BC — 52

1_ 1 | QS—BR
¢ A, 0
0
i 0

0
0
0

~QC+RS QS-BR
~QC+RS AC - R?
~AS+QR AB - Q?

0
—~AS + QR 0
0

0 A1

0 0

0 0

with A, = ABC — AS? — BR? — CQ? + 2QRS

/

K)

A

O = O O O O

/L)

al

As will be clear later, it will mostly be easier to start with the compliance matrix and calculate
the stiffness matrix by inversion.

bc—s?> —qc+rs qs—br 0 0 0
—qc+rs ac—1r*  —as+qr 0 0 0
-1 1| gs—br —as+qr ab—¢? 0 0 0
2z T4, 0 0 0 Ak 0 0
0 0 0 0 A1) 0

0 0 0 0 0 A1/m) |

with Ay = abe — as® — br? — c¢¢® + 2qrs

Increasing material symmetry leads to a reduction in material parameters.

quadratic B=A; S=R; M=1L;

transversal isotropic B=A; S=R; M=1L; K:%(A—Q)

cubic C:B:A;S:R:Q;M:L:K#%(A—Q)
isotropic C:B:A;S:R:Q;M:L:K:%(A—Q)

The planar stress-strain laws can be derived either from the stiffness matrix C' or from the
compliance matrix S. The plane strain state will be denoted by the index € and the plane
stress state will be indicated with the index o.

A.1.1 Plane strain

For a plane strain state with €33 = 723 = ¥31 = 0, the stress o33 can be expressed in the
planar strains €17 and €99. The material stiffness matrix gE can be extracted directly from
C. The material compliance matrix éa has to be derived by inversion.

€33 =723 =731 =0 — 033 = Req1 + Seaxp



o11 A Q O €11 A Qe
g=|0n |=|Q B 0 €92 =| Q. B:
| 012 0 0 K 712 . 0 0
[ €11 1 1 B -Q 0 011 [ Qe (e
e=|epn |=——| @ 4 0 o2 | =| ¢ be
- AB — Q? AB — Q?

a2

Because the components of the three-dimensional compliance matrix S are most conveniently
expressed in Young’s moduli, Poisson’s ratios and shear moduli, this matrix is a good starting
point to derive the planar matrices for specific cases. The plane strain stiffness matrix gg
must then be determined by inversion.

r s
e33 =0 =ron + sox +coz3 — 033 = —So1 = o2
€11 a qg O o11 r ros o011
e=|¢€n |=|qg b 0 o2 | — | s [ P 0 ] 022
ac—1% qc—rs 0 011 a: ¢ O o11
== 1| gc—sr bc—s*> 0 099 | =1 qg- b O 099
‘ 0 0 ke 012 0 0 k o1
-1 g2
011 a: q 0 €11 1 be —s qc + 23 8
g=1| 02 | =] ¢ b O €99 | = < —qc+rs ac—r b
012 0 0 &k Y12 5 0 0 ?8
with Ay = abc — as® — br? — cq® + 2qrs
Aa Qa 0 &11
=| Q B: 0 oo | = gag
0 0 K €12

We can now derive by substitution :

A.1.2 Plane stress

1
033 =~ 1~ [(br — gs)e11 + (as — qr)eas]

€11
€922

€12

For the plane stress state, with o33 = 093 = 031 = 0, the two-dimensional material law can
be easily derived from the three-dimensional compliance matrix S_. The strain €33 can be
directly expressed in 011 and o95. The material stiffness matrix has to be derived by inversion.
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033 =093 =031 =0 — €33 =701+ 5022

€11 a q 0 o11 s Gs O o11
e=|¢ex |=]|q¢ b 0 022 =| %% bs O o2 | =8 ¢
L 712 ] 0 0 k 012 i 0 0 k | 012
[ o1 ] 1 b —q 8 €11 [ A Qs 0 ] [ en
g=| o2 | = 4o 9 en |=| Q Bs 0 e | =C ¢
ab — ¢? ab—q =7

| 012 | 0 0 7 712 L 0 0 K | [ 72

We can derive by substitution :
1
£33 = W [(br — gs)e11 + (as — qr)ea]
The same relations can be derived from the three-dimensional stiffness matrix g .
R S
o33 =0 = Reqy + Sega + Cezz — €33 = ——€11 — =£922
C C

o11 A Q O €11 R | R S €11
g=|o02 |=|Q B 0 e | — | S rele: 0 €92

012 0 0 K Y12 0 - Y12

1 AC — R2 QC — RS 0 i €11 i Ao’ Qo’ 0 €11
= 6 QC - SR BC - S2 0 £99 = QU Bg 0 £99 =C ¢
0 0 KC | | m2 . 0 0 K Y12
-1 _

€11 A, Q, 0 o11 s qGs 0 o11
e=|¢en |=|0Qs B, O o2 | =| ¢ b; O o2 | =8 ¢g

Y12 0 0 K J12 0 0 k L 012

A.1.3 Plane strain/stress

In general we can write the stiffness and compliance matrix for planar deformation as a 3 x 3
matrix with components, which are specified for plane strain (p = €) or plane stress (p = o).

Ay Qp O ap q 0
C,=|@ By 0 b S,= 4 b O
0 0 K 0 0 k

The general relations presented before can be used to calculate the components of gp and/or
ép when components of the three-dimensional matrices C and/or S are known.

In the next sections the three-dimensional and planar material matrices are presented for
orthonormal, transversal isotropic and fully isotropic material.
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A.2 Linear elastic orthotropic material

For an orthotropic material 9 material parameters are needed to characterize its mechanical
behavior. Their names and formal definitions are :

. O+
Young’s moduli E, ==~
851’1’
M . 85 ..
Poisson’s ratios vij = — JJ
Oey;
00j
shear moduli Gij = =2
i

The introduction of these parameters is easily accomplished in the compliance matrix S.
Due to the symmetry of the compliance matrix S, the material parameters must obey the
three Maxwell relations.

T By' —vmEy' —vmBEyt 0 00 0]
—V12E1_1 E2_1 —V32E3_1 0 0 0
. —visEY Byt Byt 0 0 0
= 0 0 0 G, 0 0
0 0 0 0 Gy 0
0 0 0 0 0 Gy
with %? = % ; %223 = % ; %’31 = %j’ (Maxwell relations)

The stiffness matrix C can then be derived by inversion of S.

1—v3ov93 V3123 +V21  V21V32+V31 0 0 0
E>FEs FEoE3 By kb3
V13V32+V12 1-v31v13 V12V31+V32 0 0 0
EE3 FEi1E3 F1E3
1 ViaVo3tVis  V21Y131+V23 1—-v1av91 0 0 0
C=— E1E2 E1Es E1E2
DAY 0 0 0 AsGho 0 0
0 0 0 0 AsGog 0
0 0 0 0 0 AsG31

A, — 1 — vio91 — Vo3lse — V3113 — V12l23V31 — V21V32V13

ith -
W . E,EoEs

A.2.1 Voigt notation

In composite mechanics the so-called Voigt notation is often used, where stress and strain
components are simply numbered 1 to 6. Corresponding components of the compliance (and
stiffness) matrix are numbered accordingly. However, there is more to it than that. The
sequence of the shear components is changed. We will not use this changed sequence in the
following.

o! = [o11 092 033 012 023 031] = [01 02 03 06 04 O]

§T = [511 €22 €33 712 723 731] = [51 €2 €3 €6 €4 65]
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€1 Sii Sz Si3 0 0 0 o1
€9 Sa1 Sz S23 O 0 0 op!
es | | S31 S32 Sz 0 0 0 o3
€4 - 0 0 0 544 0 0 04
€5 0 0 0 0 S55 0 05
L €6 L 0 0 0 0 0 566 1 L 06

A.2.2 Plane strain

For plane strain the stiffness matrix can be extracted from the three-dimensional stiffness
matrix. The inverse of this 3x3 matrix is the plane strain compliance matrix.

Es Es
033 = V13 = 011 + V23 /5 022
Ey Es
1-v31113 _ v3ivasztro 0
1 2
S = _ ni3v3atrio 1—v3o103 0
= Eq Eo> 1
0 0 eIy
1—v3ov03 V312341921 0
1 FE2FEs FEoFE3
C =981 —=_— | wsustr 1-v31113 0
—c = AS E1E3 E1E3
0 0 AyGia
. 1 — v1ov91 — V2332 — V31113 — V12l23l31 — Vo1V32V/13
with Ay =
FE1E5E;
- 1 [vigv3e + 113 - Vo113 + Va3 -
33 A N\ 4~ =~ <11 4 = <22
Ag ErEy EqE,

A.2.3 Plane stress

For plane stress the compliance matrix can be extracted from the three-dimensional compli-
ance matrix. The inverse of this 3x3 matrix is the plane strain stiffness matrix.

33 = —vi3E o1 — va3 By Loao
E;t —v1 By 0
S =| -veE' Byt 0
0 0 Gy
1 By vy 0
C = ﬁ_l 10 vioFs FEs 0
=0 ad — Uyl
21712 0 0 (1 — 1/211/12)G12
1
€33 = {(r12193 + v13)e11 + (V21113 + v23)e22}

1 — w1901
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A.3 Linear elastic transversal isotropic material

Considering an transversally isotropic material with the 12-plane isotropic, the Young’s modu-
lus £, and the Poisson’s ratio v}, in this plane can be measured. The associated shear modulus
E
is related by G, = —2—.
T
Es3, the shear moduli G3, = G)3 and two Poisson ratios, which are related by symmetry :
I/ngg = Vngp.

In the perpendicular direction we have the Young’s modulus

E;Y —pEY —wpEs 0 00 0
—pEY Byt - Bt 0 00 0
g | vmE B! E;! 0o 0 0
= 0 0 0 G; Lo 0
0 0 0 0 Gy 0
| 0 0 0 0 0 Ggp |
. Ups U3
with L P
E, E3
[ 1-vspvps  v3plp3tip  Vpl3ptisp 0 0 i
EpEg EpEg EpE3
Vp3V3p+Up 1—v3prps VpV3p+Vsp 0 0
L | vt vt Lo
_ pVp3TVp3 pVp3TVp3 —Uplp
c=s'=1 | "EE" "ER mE 0 00
s 0 0 0 AG, 0 0
0 0 0 0 AsGpa 0
i 0 0 0 0 0 AG3y ]
. 1 —v,v, — V33, — V3pVp3 — Uplp3l3p — Vpl/3plp3
with A, = pVp p3V3p pLp pVp3V3p pY3pVp

E,E,E;

A.3.1 Plane strain

The plane strain stiffness matrix can be extracted from the three-dimensional stiffness matrix.
The inverse of this 3x3 matrix is the plane strain compliance matrix.

Egl/
_ p3 _
033 = (011 + 022) = v3p(011 + 022)
E
P
1-v3pvp3 _ UspUp3+Up 0
EP EP
S = _ Up3U3p+lp 1—v3pvp3 0
e D Ep 1
0 0 &
1—v3pvp3 V3pVp3+VUp 0
1 EpFs EpFE3
O — S—l - = Vp3V3p+VUp 1—v3prps 0
S
0 0 AG,
1 —v,v, — V33, — V3pVp3 — Vplp3lV/3y, — Vpl/3pl.
: _ pYp p3Y3p 3pYp3 pYp3¥3p pY3pYp3
with Ay =

E,E,E3
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A.3.2 Plane stress

For plane stress the compliance matrix can be extracted directly from the three-dimensional
compliance matrix. The inverse of this 3x3 matrix is the plane strain stiffness matrix.

Vp3
€33 = — ELp(Ull + 092)
E][)—l_1 —yp_El—l 0
éa = _UpEP EP 0_1
0 0 G
1 E, vk, 0
go— — :;1 — 1 I/pEp Ep 0
P00 0 (1-u)G,
€33 =~ 7 If)gyp (€11 + €22)

A.4 Linear elastic isotropic material

The linear elastic material behavior can be described with the material stiffness matrix C' or
the material compliance matrix S. These matrices can be written in terms of the engineering
elasticity parameters £ and v.

1 —v —v 0 0 0
-v 1 —v 0 0 0
S—l v —v 1 0 0 0
=" FE| 0 0 0 21+v) 0 0
0 0 0 0 2(1+v) 0
L 0 0 0 0 0 2(1+v) |
_ g1 _ E
= = (14+v)(1-2v)
1—-v v v 0 0 0 i
v 1l—-v v 0 0 0
v v 1—-v 0 0 0
0 0 0 11-2) 0 0
0 0 0 0 (1 —2v) 0
.0 0 0 0 0 (1—2v)
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A.4.1 Plane strain

o33 = V(011 + 022)

1
S5 = ;U v 1—v 0
0 0 2
1—v v 0
D)
C =5"1= v 1—v 0
== =¢

(I+v)i-2w) | 0 -2

E
1+v)(1—2v)

o33 = ( v(en + €22)

It is immediately clear that problems will occur for v = 0.5, which is the value for incom-
pressible material behavior.

A.4.2 Plane stress

£33 = — = (011 + 022)
33 = 15 011 + 022
1 1 1% 0
2 = E —V 0
0 0 2(1+4+v)
1 v 0
Q :__1 = E 14 1 0
= =0 1— 1/2 1
£33 = — (e11 + €22)
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