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1 Kinematics

The motion and deformation of a three-dimensional continuum is studied in continuum me-

chanics. A continuum is an ideal material body, where the neighborhood of a material point
is assumed to be dense and fully occupied with other material points. The real microstructure
of the material (molecules, crystals, particles, ...) is not considered. The deformation is also
continuous, which implies that the neighborhood of a material point always consists of the
same collection of material points.

Kinematics describes the transformation of a material body from its undeformed to its
deformed state without paying attention to the cause of deformation. In the mathematical
formulation of kinematics a Lagrangian or an Eulerian approach can be chosen. (It is also
possible to follow a so-called Arbitrary-Lagrange-Euler approach.)

The undeformed state is indicated as the state at time t0 and the deformed state as the
state at the current time t. When the deformation process is time- or rate-independent, the
time variable must be considered to be a fictitious time, only used to indicate subsequent
moments in the deformation process.

t

O

P

P
t0

Fig. 1.1 : Deformation of continuum

1.1 Identification of points

Describing the deformation of a material body cannot be done without a proper identification
of the individual material points.
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1.1.1 Material coordinates

Each point of the material can be identified by or labeled with material coordinates. In a
three-dimensional space three coordinates {ξ1, ξ2, ξ3} are needed and sufficient to identify a
point uniquely. The material coordinates of a material point do never change. They can be
stored in a column ξ

˜
: ξ

˜

T =
[

ξ1 ξ2 ξ3

]

.

P

ξ
˜

t

P

ξ
˜

t0

Fig. 1.2 : Material coordinates

1.1.2 Position vectors

A point of the material can also be identified with its position in space. Two position vectors
can be chosen for this purpose : the position vector in the undeformed state, ~x0, or the posi-
tion vector in the current, deformed state, ~x. Both position vectors can be considered to be
a function of the material coordinates ξ

˜
.

Each point is always identified with one position vector. One spatial position is always
occupied by one material point. For a continuum the position vector is a continuous differ-
entiable function.

Using a vector base {~e1, ~e2, ~e3}, components of the position vectors can be determined
and stored in columns.

A
V0

A0 t

V

O

~e3

~e2

~e1

~x0

t0

~x

Ω

Γ

Fig. 1.3 : Position vector

undeformed configuration (t0) ~x0 = ~χ(ξ
˜
, t0) = x01~e1 + x02~e2 + x03~e3

deformed configuration (t) ~x = ~χ(ξ
˜
, t) = x1~e1 + x2~e2 + x3~e3
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1.1.3 Euler-Lagrange

When an Eulerian formulation is used, all variables are determined in material points which
are identified in the deformed state with their current position vector ~x. When a Lagrangian

formulation is used to describe state transformation, all variables are determined in material
points which are identified in the undeformed state with their initial position vector ~x0. For
a scalar quantity a, this can be formally written with a function AE or AL, respectively.

The difference da of a scalar quantity a in two adjacent points P and Q can be calculated
in both the Eulerian and the Lagrangian framework. This leads to the definition of two
gradient operators, ~∇ and ~∇0, respectively.

For a vectorial quantity ~a, the spatial difference d~a in two adjacent points, can also be
calculated, using either ~∇0 or ~∇. For the position vectors, the gradients result in the unity
tensor I.

Euler : ”observer” is fixed in space

a = AE(~x, t)

da = aQ − aP = AE(~x + d~x, t) −AE(~x, t) = d~x · (~∇a)
∣

∣

∣

t

~∇ = ~e1
∂

∂x1
+ ~e2

∂

∂x2
+ ~e3

∂

∂x3

Lagrange : ”observer” follows the material

a = AL(~x0, t)

da = aQ − aP = AL(~x0 + d~x0, t) −AL(~x0, t) = d~x0 · (~∇0a)
∣

∣

∣

t

~∇0 = ~e1
∂

∂x01
+ ~e2

∂

∂x02
+ ~e3

∂

∂x03

position vectors

~∇~x = I ; ~∇0~x0 = I

1.2 Time derivatives

A time derivative of a variable expresses the change of its value in time. This change can
be measured in one and the same material point or in one and the same point in space. In
the first case, the observer of the change follows the material, and, in the second case, he is
located in a fixed spatial position.

This difference of observer position leads to two different time derivatives, the material

time derivative and the spatial time derivative. Using a material time derivative is associated
with the Lagrangian formulation, while in the Eulerian formulation the spatial time derivative
is generally used. Below, we consider the time derivatives of a scalar vatiable a.

material time derivative
Da

Dt
= ȧ = lim

∆t→0

1

∆t
{A(~x0, t + ∆t) − A(~x0, t)}

velocity of a material point ~v = ~v(~x0) = ~̇x
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spatial time derivative
δa

δt
= lim

∆t→0

1

∆t
{A(~x, t + ∆t) −A(~x, t)}

velocity field ~v = ~v(~x, t)

A relation between the material and the spatial time derivative can be derived. The material
velocity enters this relation and represents the velocity of the observer. The material time
derivative can be written as the sum of the spatial time derivative and the convective time
derivative.

Da

Dt
= lim

∆t→0

1

∆t
{A(~x0, t + ∆t) − A(~x0, t)}

= lim
∆t→0

1

∆t
{A(~x + d~x, t + ∆t) −A(~x, t)}

= lim
∆t→0

1

∆t
{A(~x + d~x, t + ∆t) −A(~x, t + ∆t) + A(~x, t + ∆t) −A(~x, t)}

= lim
∆t→0

1

∆t
{d~x · (~∇a)

∣

∣

∣

t+∆t
+ A(~x, t + ∆t) −A(~x, t)}

= lim
∆t→0

{ d~x

∆t
· (~∇a)

∣

∣

∣

t+∆t
} + lim

∆t→0

1

∆t
{A(~x, t + ∆t) −A(~x, t)}

= ~v · (~∇a) +
δa

δt
= (convective time derivative) + (spatial time derivative)

= (material time derivative)

1.3 Deformation

Upon deformation, a material point changes position from ~x0 to ~x. This is denoted with a
displacement vector ~u. In three-dimensional space this vector has three components : u1, u2

and u3.
The deformation of the material can be described by the displacement vector of all

the material points. This, however, is not a feasible procedure. Instead, we consider the
deformation of an infinitesimal material volume in each point, which can be described with a
deformation tensor.
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P
d~x

Q

d~x0

Q

P

~x~x0

~u

~e2

~e3

V0
V

A0 A

tt0

~e1
O

Fig. 1.4 : Deformation of a continuum

~u = ~x − ~x0 = u1~e1 + u2~e2 + u3~e3

1.3.1 Deformation tensor

To introduce the deformation tensor, we first consider the deformation of an infinitesimal
material line element, between two adjacent material points. The vector between these points
in the undeformed state is d~x0. Deformation results in a transformation of this vector to d~x,
which can be denoted with a tensor, the deformation tensor F . Using the gradient operator
with respect to the undeformed state, the deformation tensor can be written as a gradient,
which explains its much used name : deformation gradient tensor.

d~x = F · d~x0

= ~X(~x0 + d~x0, t) − ~X(~x0, t) = d~x0 ·

(

~∇0~x
)

=
(

~∇0~x
)c

· d~x0 = F · d~x0

F =
(

~∇0~x
)c

=
[(

~∇0~x0

)c

+
(

~∇0~u
)c]

= I +
(

~∇0~u
)c

In the undeformed configuration, an infinitesimal material volume is uniquely defined by
three material line elements or material vectors d~x01, d~x02 and d~x03. Using the deformation
tensor F , these vectors are transformed to the deformed state to become d~x1, d~x2 and d~x3.
These vectors span the deformed volume element, containing the same material points as in
the initial volume element. It is thus obvious that F describes the transformation of the
material.
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tt0

P

P

F

d~x1

d~x01

d~x2

d~x02

d~x3
d~x03

Fig. 1.5 : Deformation tensor

d~x1 = F · d~x01 ; d~x2 = F · d~x02 ; d~x3 = F · d~x03

Volume change

The three vectors which span the material element, can be combined in a triple product. The
resulting scalar value is positive when the vectors are right-handed and represents the volume
of the material element. In the undeformed state this volume is dV0 and after deformation the
volume is dV . Using the deformation tensor F and the definition of the determinant (third
invariant) of a second-order tensor, the relation between dV and dV0 can be derived.

tt0

P
P

F

d~x1

d~x01

d~x2

d~x02

d~x3
d~x03

Fig. 1.6 : Volume change

dV = d~x1 ∗ d~x2 · d~x3

= (F · d~x01) ∗ (F · d~x02) · (F · d~x03)

= det(F ) (d~x01 ∗ d~x02 · d~x03)

= det(F ) dV0

= J dV0
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Area change

The vector product of two vectors along two material line elements represents a vector, the
length of which equals the area of the parallelogram spanned by the vectors. Using the
deformation tensor F , the change of area during deformation can be calculated.

dA~n = d~x1 ∗ d~x2 = (F · d~x01) ∗ (F · d~x02)

dA~n · (F · d~x03) = (F · d~x01) ∗ (F · d~x02) · (F · d~x03)

= det(F )(d~x01 ∗ d~x02) · d~x03 ∀ d~x03 →
dA~n ·F = det(F )(d~x01 ∗ d~x02)

dA~n = det(F )(d~x01 ∗ d~x02) · F−1

= det(F )dA0 ~n0 ·F−1

= dA0 ~n0 ·
(

F−1 det(F )
)

Inverse deformation

The determinant of the deformation tensor, being the quotient of two volumes, is always a
positive number. This implies that the deformation tensor is regular and that the inverse
F−1 exists. It represents the transformation of the deformed state to the undeformed state.
The gradient operators ~∇ and ~∇0 are related by the (inverse) deformation tensor.

J =
dV

dV0
= det(F ) > 0 → F regular → d~x0 = F−1

· d~x

relation between gradient operators

I = F−T
·F T →

(

~∇~x
)

= F−T
·

(

~∇0~x
)

→ ~∇ = F−T
· ~∇0

Homogeneous deformation

The deformation tensor describes the deformation of an infinitesimal material volume, initially
located at position ~x0. The deformation tensor is generally a function of the position ~x0.
When F is not a function of position ~x0, the deformation is referred to as being homogeneous.
In that case, each infinitesimal material volume shows the same deformation. The current
position vector ~x can be related to the initial position vector ~x0 and an unknown rigid body
translation ~t.
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Fig. 1.7 : Homogeneous deformation

~∇0~x = F c = uniform tensor → ~x = (~x0 ·F c) + ~t = F · ~x0 + ~t

1.3.2 Elongation and shear

During deformation a material line element d~x0 is transformed to the line element d~x. The
elongation factor or stretch ratio λ of the line element, is defined as the ratio of its length
after and before deformation. The elongation factor can be expressed in F and ~e0, the unity
direction vector of d~x0. It follows that the elongation is calculated from the product F c

· F ,
which is known as the right Cauchy-Green stretch tensor C.

~e0

F

d~x

d~x0

~e

Fig. 1.8 : Elongation of material line element

λ2(~e01) =
d~x1 · d~x1

d~x01 · d~x01
=

d~x01 ·F T
·F · d~x01

d~x01 · d~x01
=

||d~x01||2
||d~x01||2

(

~e01 ·F T
·F ·~e01

)

= ~e01 ·F T
·F ·~e01 = ~e01 ·C ·~e01

We consider two material vectors in the undeformed state, d~x01 and d~x02, which are perpen-
dicular. The shear deformation γ is defined as the cosine of θ, the angle between the two
material vectors in the deformed state. The shear deformation can be expressed in F and ~e01

and ~e02, the unit direction vectors of d~x01 and d~x02. Again the shear is calculated from the
right Cauchy-Green stretch tensor C = F c

·F .
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F

θ

d~x1

d~x2

d~x01

d~x02

~e1

~e2

~e01
~e02

Fig. 1.9 : Shear of two material line elements

γ(~e01, ~e02) = sin
(

π
2 − θ

)

= cos(θ) =
d~x1 · d~x2

||d~x1||||d~x2||
=

d~x01 ·F T
·F · d~x02

||d~x1||||d~x2||

=
||d~x01||||d~x02||(~e01 ·F T

·F ·~e02)

λ(~e01)||d~x01||λ(~e02)||d~x02||
=

~e01 ·F T
·F ·~e02

λ(~e01)λ(~e02)

=
~e01 · C ·~e02

λ(~e01)λ(~e02)

1.3.3 Principal directions of deformation

In each point P there is exactly one orthogonal material volume, which will not show any
shear during deformation from t0 to t. Rigid rotation may occur, although this is not shown
in the figure.

The directions {1, 2, 3} of the sides of the initial orthogonal volume are called principal

directions of deformation and associated with them are the three principal elongation factors

λ1, λ2 and λ3. For this material volume the three principal elongation factors characterize
the deformation uniquely. Be aware of the fact that the principal directions change when the
deformation proceeds. They are a function of the time t.

The relative volume change J is the product of the three principal elongation factors.
For incompressible material there is no volume change, so the above product will have value
one.

Pz

y

O x

t0
t

t0
t

P P
2

3
3

2

1

1ds2

ds1

ds3

ds01

ds02

ds03
P

Fig. 1.10 : Deformation of material cube with sides in principal directions
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λ1 =
ds1

ds01
; λ2 =

ds2

ds02
; λ3 =

ds3

ds03
; γ12 = γ23 = γ31 = 0

J =
dV

dV0
=

ds1ds2ds3

ds01ds02ds03
= λ1λ2λ3

1.3.4 Strains

The elongation of a material line element is completely described by the stretch ratio λ. When
there is no deformation, we have λ = 1. It is often convenient to describe the elongation with a
so-called elongational strain, which is zero when there is no deformation. A strain ε is defined
as a function of λ, which has to satisfy certain requirements. Much used strain definitions
are the linear, the logarithmic, the Green-Lagrange and the Euler-Almansi strain. One of the
requirements of a strain definition is that it must linearize toward the linear strain, which is
illustrated in the figure below.

linear εl = λ − 1

logarithmic εln = ln(λ)

Green-Lagrange εgl = 1
2(λ2 − 1)

Euler-Almansi εea = 1
2

(

1 − 1

λ2

)

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4

λ

ε 
=

 f(
λ)

 

 

ε
l

ε
ln

ε
gl

ε
ea

Fig. 1.11 : Strain definitions

1.3.5 Strain tensor

The Green-Lagrange strain of a line element with a known direction ~e0 in the undeformed
state, can be calculated straightforwardly from the so-called Green-Lagrange strain tensor E.
Also the shear γ can be expressed in this tensor. For other strain definitions, different strain
tensors are used, which are not descussed here.

1
2

{

λ2(~e01) − 1
}

= ~e01 ·
{

1
2

(

F T
·F − I

)}

·~e01 = ~e01 ·E ·~e01
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γ(~e01, ~e02) =
~e01 · (F T

·F − I) ·~e02

λ(~e01)λ(~e02)
=

[

2

λ(~e01)λ(~e02)

]

~e01 ·E ·~e02

E = 1
2

(

F T
· F − I

)

F =
(

~∇0~x
)T

= I +
(

~∇0~u
)T















→
E = 1

2

[

{

I +
(

~∇0~u
)}

·

{

I +
(

~∇0~u
)T

}

− I

]

= 1
2

[

(

~∇0~u
)T

+
(

~∇0~u
)

+
(

~∇0~u
)

·

(

~∇0~u
)T

]

1.3.6 Right Cauchy-Green deformation tensor

The general transformation of a material line element from the undeformed to the deformed
state is uniquely described by the deformation (gradient) tensor F . The true deformation
consists of elongation of material line elements and mutual rotation of line elements, which is
also referred to as shear.

The true deformation, represented by the expressions for λ and γ, is described by the
product F c

·F , which is called the right Cauchy-Green deformation tensor C. This important
tensor has two properties, which are easily recognized : 1) it is symmetric and 2) it is positive
definite.

These properties imply that C has real-valued eigenvectors and eigenvalues, of which
the latter must be positive. The eigenvectors are mutually perpendicular or can be chosen to
be so. Taking them as a vector basis, the tensor C can be written in spectral form.

1. symmetric Cc = C

2. positive definite

~a ·C ·~a = ~a ·F c
·F ·~a = (F ·~a) · (F ·~a)

F is regular → F ·~a 6= ~0 if ~a 6= ~0 →
~a ·C ·~a > 0 ∀ ~a 6= ~0

3. eigenvalues and eigenvectors real
eigenvalues positive
eigenvectors ⊥ (choice)







→ spectral representation

C = µ1 ~m1 ~m1 + µ2 ~m2 ~m2 + µ3 ~m3 ~m3

Eigenvectors and eigenvalues

The physical meaning of the eigenvalues and eigenvectors of C becomes clear if we consider
again the expressions for stretch and shear, but now using the spectral representation of
C. For these expressions to have a physical relevant meaning, the eigenvectors of C must
characterize a material direction in the undeformed state. They are denoted as ~n0i, i = 1, 2, 3.

Two eigenvectors of C are mutually perpendicular and represent the direction of two
material elements in the undeformed state. The shear deformation between these two material
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directions is zero. i.e. the material line elements remain perpendicular during deformation.
They are called principal directions of deformation or principal strain directions.

The eigenvalues of C appear to be the squared stretch ratios of the material line elements
oriented in the direction of the eigenvectors of C. They are called the principal elongation

factors. The right Cauchy-Green deformation tensor is fully defined in the undeformed state.
It is therefore characterized as a Lagrangian tensor.

C = µ1 ~m1 ~m1 + µ2 ~m2 ~m2 + µ3 ~m3 ~m3

C = µ1~n01~n01 + µ2~n02~n02 + µ3~n03~n03

λ(~n01) =
√

~n01 ·C ·~n01 =
√

µ1 ; γ(~n01, ~n02) =
~n01 ·C ·~n02√

~n01 ·C ·~n01

√
~n02 ·C ·~n02

= 0

C = λ2
1 ~n01~n01 + λ2

2 ~n02~n02 + λ2
3 ~n03~n03

1.3.7 Right stretch tensor

Based on the right Cauchy-Green deformation tensor, a new tensor, the right stretch tensor

U , is simply defined as the square root of C. It is obvious that U , like C, is symmetric,
positive definite and regular.

U =
√

C = λ1~n01~n01 + λ2~n02~n02 + λ3~n03~n03

1. symmetric : U c = U

2. positive definite: ~a ·U ·~a > 0 ∀ ~a

3. regular : U−1 =
1

λ1
~n01~n01 +

1

λ2
~n02~n02 +

1

λ3
~n03~n03

4. det(C) = det(U ·U) = det(F c
·F ) = det2(F ) →

det(U ) = λ1λ2λ3 = det(F ) = J

The stretch tensor U can be used to transform perpendicular material line elements d~x01, d~x02

and d~x03. The resulting material vectors d~x∗

01, d~x∗

02 and d~x∗

03, will have changed in length and
will also be no longer perpendicular, when the original line elements do not coincide with the
principal deformation directions. It can be concluded that U describes the real deformation,
so elongation and shear.
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d~x03

d~x02

d~x01 d~x∗

02

U

d~x∗

03

d~x∗

01

Fig. 1.12 : Transformation by U

d~x∗

01 = U · d~x01 ; d~x∗

02 = U · d~x02 ; d~x∗

03 = U · d~x03

Total transformation

The total transformation from the undeformed to the deformed state, is not described by U

but by F . It seems that there must be another part of the total transformation, which is not
described by U . This missing link between U and F is a tensor R = F ·U−1.

d~x03

d~x02

d~x01

R

U

d~x∗

03 d~x∗

02

d~x∗

01

d~x3
d~x2

d~x1

F

Fig. 1.13 : Total transformation
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d~x∗

01 = U · d~x01 → d~x01 = U−1
· d~x∗

01

d~x1 = F · d~x01

}

→

d~x1 = F ·U−1
· d~x∗

01 = R · d~x∗

01 → R = F ·U−1

1.3.8 Rotation tensor

The tensor R = F ·U−1 has some properties which renders it to have a physical meaning :
it is a rotation tensor and describes the rigid body rotation of the material volume element
during the transformation from the undeformed to the current, deformed state.

R = F ·U−1

1.

Rc
·R = U−c

·F c
·F ·U−1

= U−c
·U · U ·U−1 = U−c

·U c
·U · U−1

= I → R is orthogonal

2.

det(R) = det(F ·U−1)

= det(U ) det(U−1) = det(U ·U−1)

= det(I) = 1 → R is rotation tensor

1.3.9 Right polar decomposition

The total transformation described by F is decomposed into a true deformation, described
by U and a rigid body rotation, described by R. This decomposition is denoted as the right

polar decomposition of the deformation tensor. This decomposition is unique and both U and
R can be determined from F .

F = R · U

1.3.10 Strain tensors

The stretch ratio of a material line element in the direction ~e0 could be determined using the
right Cauchy-Green deformation tensor C. For a strain definition ε = f(λ) we would like to
have a strain tensor ε, such that the strain of a material line element in the direction ~e0 can
be calculated according to : ε(~e0) = ~e0 · ε ·~e0.

stretch ratio λ(~e0) =
√

~e0 ·C ·~e0
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strain tensor ε

strain measure ε(~e0) = ~e0 · ε ·~e0 = f(λ(~e0))

shear measure γ(~e01, ~e02) = ~e01 · ε ·~e02

Linear strain tensor

The linear strain tensor E is defined as E = U − I. The linear strain of a material line
element in the direction ~e0 cannot be calculated with this tensor. This is only possible for a
line element in a principal deformation direction ~n0i.

E = U − I

~e0 · E ·~e0 = ~e0 · U ·~e0 − ~e0 · I ·~e0 = ~e0 ·U ·~e0 − 1 6= λ(~e0) − 1

~n0i · E ·~n0i = ~n0i · U ·~n0i − 1 = λ(~n0i) − 1 = λi − 1

Logarithmic strain tensor

The logarithmic strain tensor Λ is defined as Λ = ln(U). The logarithmic strain of a material
line element in the direction ~e0 cannot be calculated with this tensor. This is only possible
for a line element in a principal deformation direction ~n0i.

Λ = ln(U)

~e0 · Λ ·~e0 = ~e0 · ln(U ) ·~e0 6= ln(λ(~e0))

~n0i · Λ ·~n0i = ~n0i · ln(U) · ~n0i = ln(λ(~n0i)) = ln(λi)

Green-Lagrange strain tensor

The Green-Lagrange strain tensor E is defined as E = 1
2 (C − I). For a material line element

in the initial direction ~e0 the Green-Lagrange strain can be calculated using the Green-
Lagrange strain tensor.

E = 1
2 (C − I)

~e0 ·E ·~e0 = 1
2 (~e0 ·C ·~e0 − 1) = 1

2

(

λ2(~e0) − 1
)
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Infinitesimal linear strain tensor

The infinitesimal strain tensor ε is the linearized fraction of the Green-Lagrange strain tensor
E. For infinitesimal displacements, the first partial derivatives of the displacement compo-
nents are so small that all involved squares and products are negligible with respect to the
linear terms. The non-linear terms in E can than be neglected.

For infinitesimal displacements the change in position vector of a material point is not
relevant. This means that the difference between gradient operators vanishes.

E = 1
2 (F c

·F − I) = 1
2

{

(~∇0~u) + (~∇0~u)c + (~∇0~u) · (~∇0~u)c
}

linearisation → infinitesimal strain tensor

ε = 1
2

{

(~∇0~u) + (~∇0~u)c
}

= 1
2 (F + F c) − I = 1

2

{

(~∇~u) + (~∇~u)c
}

1.4 Deformation rate

The rate of deformation of a material line element is the material time derivative – we follow
the same line element in time – of a material vector d~x in the current state. This derivative
can be related to d~x with a tensor L, the velocity gradient tensor. This tensor is decomposed
into a symmetric and a skewsymmetric part, the deformation rate tensor D and the spin

tensor Ω, respectively.

d~̇x = Ḟ · d~x0 = Ḟ ·F−1
· d~x = L · d~x = (~∇~v)c · d~x

= 1
2{L + Lc} · d~x + 1

2{L − Lc} · d~x

= D · d~x + Ω · d~x

1.4.1 Spin tensor

The spin tensor Ω describes only rotation rate of the material line element. This follows
directly from the fact that the spin tensor is skewsymmetric and has a unique associated
axial vector ~ω.

Ω = 1
2

{

Ḟ ·F−1 − (Ḟ · F−1)c
}

= 1
2

{(

~∇~v
)c

−
(

~∇~v
)}

Ω = skewsymmetric → Ω · d~x = ~ω ∗ d~x = velocity ⊥ d~x = rotation rate
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~ω ∗ d~x

~ω

d~x

Fig. 1.14 : Rotation rate of material line element

The proof that a skewsymmetric tensor has an associated axial vector is repeated here.

~q ·Ω · ~q = ~q ·Ωc
· ~q = − ~q ·Ω · ~q →

~q ·Ω · ~q = 0 →
Ω · ~q = ~p →
~q · ~p = 0 →
~q ⊥ ~p →
∃ ~ω zdd ~p = ~ω ∗ ~q →

Ω · ~q = ~ω ∗ ~q

The axial vector associated with a skewsymmetric tensor is unique. Its components can be
determined and expressed in the components of the skewsymmetric tensor.

Ω · ~q = ~ω ∗ ~q ∀ ~q

Ω · ~q = ~e
˜
T





Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33









q1

q2

q3



 = ~e
˜
T





Ω11q1 + Ω12q2 + Ω13q3

Ω21q1 + Ω22q2 + Ω23q3

Ω31q1 + Ω32q2 + Ω33q3





~ω ∗ ~q = (ω1~e1 + ω2~e2 + ω3~e3) ∗ (q1~e1 + q2~e2 + q3~e3)

= ω1q2(~e3) + ω1q3(−~e2) + ω2q1(−~e3) + ω2q3(~e1) + ω3q1(~e2) + ω3q2(−~e1)

= [~e1 ~e2 ~e3]





ω2q3 − ω3q2

ω3q1 − ω1q3

ω1q2 − ω2q1





Ω · ~q = ~ω ∗ ~q ∀~q → Ω =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




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1.4.2 Deformation rate tensor

The deformation rate tensor does not what its name suggests. For a random material vector
d~x the product D · d~x is a vector which is not along d~x. The deformation rate tensor describes
the rate of elongation but also partly the rate of rotation of d~x. Only for material line elements
in the direction of one if its eigenvectors the tensor D describes purely elongation rate.

D =1
2

{

Ḟ ·F−1 + (Ḟ · F−1)c
}

=
{(

~∇~v
)c

+
(

~∇~v
)}

D = Dc → D = ν1~η1~η1 + ν2~η2~η2 + ν3~η3~η3

1. : vector d~x along ~η1 : d~x = dx1~η1

D · d~x = dx1D · ~η1 = dx1ν1~η1 = ν1d~x

2. : random vector : d~x = dx1~η1 + dx2~η2 + dx3~η3

D · d~x = dx1ν1~η1 + dx2ν2~η2 + dx3ν3~η3

ν1d~x

~η1

~η2

~η3

d~x
Ω · d~x

~η1

D · d~x

~η3

~η2

Ω · d~x

~e d~x

Fig. 1.15 : Deformation rate of material line element

1.4.3 Elongation rate

The elongation rate of a material line element can be expressed in the time derivative of the
elongation factor λ.

λ2 = ~e0 · C ·~e0 → D

Dt
(λ2) =

D

Dt
(~e0 ·C ·~e0) →

2λλ̇ = ~e0 ·
D

Dt
(C) ·~e0 = ~e0 ·

D

Dt
(F c

·F ) ·~e0

= ~e0 · {Ḟ c
·F + F c

· Ḟ } ·~e0

= ~e0 · F c
· {F−c

· Ḟ
c
+ Ḟ ·F−1} · F ·~e0

= (F ·~e0) · {(Ḟ ·F−1)c + Ḟ ·F−1} · (F ·~e0)

= (λ~e) · (2D) · (λ~e) →

λ̇

λ
= ~e ·D ·~e
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1.4.4 Volume change rate

The rate of change of the material volume, the material time derivative of the volume change
factor J , is the product of J itself and the trace of the deformation rate tensor D. To derive
this relation, we consider a material volume element in the undeformed and the deformed
state. In the undeformed state the sides of the element coincide with the pricipal deformation
directions {~n01, ~n02, ~n03}.

~n03

tt0

~n1 ~n2

~n3

~n01

~n02

Fig. 1.16 : Volume change rate of material cube

tr(D) = ~n1 ·D ·~n1 + ~n2 ·D ·~n2 + ~n3 ·D ·~n3

=
λ̇1

λ1
+

λ̇2

λ2
+

λ̇3

λ3
=

D

Dt
{ln(λ1) + ln(λ2) + ln(λ3)} =

D

Dt
{ln(λ1λ2λ3)}

=
D

Dt
[ln{det(U )}] =

D

Dt
[ln{det(F )}] =

D

Dt
{ln(J)} =

J̇

J
→

J̇ = Jtr(D) = J
(

~∇ ·~v
)

1.4.5 Area change rate

The rate of change of a material area dA with unit normal vector ~n can also be expressed in
the velocity gradient tensor L.

D

Dt
(dA~n) =

D

Dt

{

det(F )dA0~n0 ·F−1
}

=
D

Dt
{det(F )} dA0~n0 ·F−1 + det(F )dA0~n0 · Ḟ

−1

= J̇ dA0~n0 · F−1 − J dA0~n0 ·F−1
· L

= tr(L)JdA0~n0 ·F−1 − J dA0~n0 ·F−1
·L

= J tr(L)F−c
· dA0~n0 − J Lc

·F−c
· dA0~n0

= J (tr(L)I − Lc) ·F−c
· dA0~n0

= (tr(L)I − Lc) dA~n
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1.5 Linear deformation

In linear elasticity theory deformations are very small. All kind of relations from general
continuum mechanics theory may be linearized, resulting for instance in the linear strain
tensor ε, which is then fully expressed in the gradient of the displacement. The deformations
are in fact so small that the geometry of the material body in the deformed state approximately
equals that of the undeformed state.

~t

O

t0

t

~x ≈ ~x0

~q

V ≈ V0

Fig. 1.17 : Small deformation

E = 1
2

[

(

~∇0~u
)T

+
(

~∇0~u
)

+
(

~∇0~u
)

·

(

~∇0~u
)T

]

small deformation →
(

~∇0~u
)T

= F − I ≈ O











→

E ≈ 1
2

[

(

~∇0~u
)T

+
(

~∇0~u
)

]

≈ 1
2

[

(

~∇~u
)T

+
(

~∇~u
)

]

= ε symm!

Not only straining and shearing must be small to allow the use of linear strains, also the rigid
body rotation must be small. This is immediately clear, when we consider the rigid rotation of
a material line element PQ around the fixed point P . The x- and y-displacement of point Q,
u and v respectively, are expressed in the rotation angle φ and the length of the line element
dx0. The nonlinear Green-Lagrange strain is always zero. The linear strain, however, is only
zero for very small rotations.

φ
P Q

x0

Q

dx0

Fig. 1.18 : Rigid rotation of a line element
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u = uQ = −[dx0 − dx0 cos(φ)] = [cos(φ) − 1]dx0

v = vQ = [sin(φ)]dx0







→

∂u

∂x0
= cos(φ) − 1 ;

∂v

∂x0
= sin(φ) →

εgl =
∂u

∂x0
+ 1

2

(

∂u

∂x0

)2

+ 1
2

(

∂v

∂x0

)2

= 0

εl =
∂u

∂x0
= cos(φ) − 1 6= 0 !!

Elongational, shear and volume strain

For small deformations and rotations the elongational and shear strain can be linearized and
expressed in the linear strain tensor ε. The volume change ratio J can be expressed in linear
strain components and also linearized.

elong. strain 1
2

(

λ2(~e01) − 1
)

= ~e01 ·E ·~e01

↓
λ(~e01) − 1 = ~e01 · ε ·~e01

shear strain γ(~e01, ~e02) = sin
(

π
2 − θ

)

=

(

2

λ(~e01)λ(~e02)

)

~e01 · E ·~e02

↓
π
2 − θ = 2~e01 · ε ·~e02

volume change J =
dV

dV0
= λ1λ2λ3 = (ε1 + 1)(ε2 + 1)(ε2 + 1)

↓
J = ε1 + ε2 + ε3 + 1 = tr(ε) + 1

volume strain J − 1 = tr(ε)

1.5.1 Linear strain matrix

With respect to an orthogonal basis, the linear strain tensor can be written in components,
resulting in the linear strain matrix.

Because the linear strain tensor is symmetric, it has three real-valued eigenvalues {ε1, ε2, ε3}
and associated eigenvectors {~n1, ~n2, ~n3}. The eigenvectors are normalized to have unit length
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and they are mutually perpendicular, so they constitute an orthonormal vector base. The
strain matrix w.r.t. this vector base is diagonal.

The eigenvalues are referred to as the principal strains and the eigenvectors as the prin-

cipal strain directions. They are equivalent to the principal directions of deformatieon. Line
elements along these directions in the undeformed state t0 do not show any shear during
deformation towards the current state t.

ε =





ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33



 with







ε21 = ε12

ε32 = ε23

ε31 = ε13

principal strain matrix ε =





ε1 0 0
0 ε2 0
0 0 ε3





spectral form ε = ε1~n1~n1 + ε2~n2~n2 + ε3~n3~n3

Cartesian components

The linear strain components w.r.t. a Cartesian coordinate system are easily derived using the
component expressions for the gradient operator and the displacement vector. For derivatives

a short notation is used : ( )i,j =
∂( )i
∂xj

.

gradient operator ~∇ = ~ex
∂

∂x
+ ~ey

∂

∂y
+ ~ez

∂

∂z

displacement vector ~u = ux~ex + uy~ey + uz~ez

linear strain tensor ε = 1
2

{

(~∇~u)c + (~∇~u)
}

= ~e
˜
T ε~e

˜

ε =





εxx εxy εxz

εyx εyy εyz

εzx εzy εzz



 =
1

2







2ux,x ux,y + uy,x ux,z + uz,x

uy,x + ux,y 2uy,y uy,z + uz,y

uz,x + ux,z uz,y + uy,z 2uz,z







Cylindrical components

The linear strain components w.r.t. a cylindrical coordinate system are derived straight-
forwardly using the component expressions for the gradient operator and the displacement
vector.
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gradient operator ~∇ = ~er
∂

∂r
+ ~et

1

r

∂

∂θ
+ ~ez

∂

∂z

displacement vector ~u = ur~er(θ) + ut~et(θ) + uz~ez

linear strain tensor ε = 1
2

{

(~∇~u)c + (~∇~u)
}

= ~e
˜
T ε~e

˜

ε =





εrr εrt εrz

εtr εtt εtz

εzr εzt εzz



 =
1

2







2ur,r
1
r
(ur,t − ut) + ut,r ur,z + uz,r

1
r
(ur,t − ut) + ut,r 21

r
(ur + ut,t)

1
r
uz,t + ut,z

uz,r + ur,z
1
r
uz,t + ut,z 2uz,z







Compatibility conditions

The six independent strain components are related to only three displacement components.
Therefore the strain components cannot be independent. Six relations can be derived, which
are referred to as the compatibility conditions.

∂2εxx

∂y2
+

∂2εyy

∂x2
= 2

∂2εxy

∂x∂y

∂2εyy

∂z2
+

∂2εzz

∂y2
= 2

∂2εyz

∂y∂z

∂2εzz

∂x2
+

∂2εxx

∂z2
= 2

∂2εzx

∂z∂x

∂2εxx

∂y∂z
+

∂2εyz

∂x2
=

∂2εxz

∂x∂y
+

∂2εxy

∂x∂z

∂2εyy

∂z∂x
+

∂2εzx

∂y2
=

∂2εyx

∂y∂z
+

∂2εyz

∂y∂x

∂2εzz

∂x∂y
+

∂2εxy

∂z2
=

∂2εzy

∂z∂x
+

∂2εzx

∂z∂y

1

r2

∂2εrr

∂θ2
+

∂2εtt

∂r2
− 2

r

∂2εrt

∂r∂θ
− 1

r

∂εrr

∂r
+

2

r

∂εtt

∂r
− 2

r2

∂εrt

∂θ
= 0

1.6 Special deformations

1.6.1 Planar deformation

It often happens that (part of) a structure is loaded in one plane. Moreover the load is often
such that no bending out of that plane takes place. The resulting deformation is referred to
as being planar.

Here it is assumed that the plane of deformation is the x1x2-plane. Note that in this
planar deformation there still can be displacement perpendicular to the plane of deformation,
which results in change of thickness.
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The in-plane displacement components u1 and u2 are only a function of x1 and x2. The
out-of-plane displacement u3 may be a function of x3 as well.

u1 = u1(x1, x2) ; u2 = u2(x1, x2) ; u3 = u3(x1, x2, x3)

1.6.2 Plane strain

When the boundary conditions and the material behavior are such that displacement of
material points are only in the x1x2-plane, the deformation is referred to as plane strain in
the x1x2-plane. Only three relevant strain components remain.

u1 = u1(x1, x2) ; u2 = u2(x1, x2) ; u3 = 0

ε33 = 0 ; γ13 = γ23 = 0

compatibility : ε11,22 + ε22,11 = 2ε12,12

1.6.3 Axi-symmetric deformation

Many man-made and natural structures have an axi-symmetric geometry, which means that
their shape and volume can be constructed by virtually rotating a cross section around the
axis of revolution. Points are indicated with cylindrical coordinates {r, θ, z}. When material
properties and loading are also independent of the coordinate θ, the deformation and resulting
stresses will be also independent of θ.

z

r

P

r

z

r

θ

Fig. 1.19 : Axi-symmetric deformation
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∂

∂θ
( ) = 0 → ~u = ur(r, z)~er(θ) + ut(r, z)~et(θ) + uz(r, z)~ez

ε =
1

2





2ur,r −1
r
(ut) + ut,r ur,z + uz,r

−1
r
(ut) + ut,r 21

r
(ur) ut,z

uz,r + ur,z ut,z 2uz,z





With the additional assumption that no rotation around the z-axis takes place (ut = 0), all
state variables can be studied in one half of the cross section through the z-axis.

∂

∂θ
( ) = 0 and ut = 0 → ~u = ur(r, z)~er(θ) + uz(r, z)~ez

ε =
1

2





2ur,r 0 ur,z + uz,r

0 21
r
(ur) 0

uz,r + ur,z 0 2uz,z





Axi-symmetric plane strain

When boundary conditions and material behavior are such that displacement of material
points are only in the rθ-plane, the deformation is referred to as plane strain in the rθ-plane.

plane strain deformation

ur = ur(r, θ)
ut = ut(r, θ)
uz = 0







→ εzz = γrz = γtz = 0

linear strain matrix

ε =
1

2





2ur,r ut,r − 1
r
(ut) 0

ut,r − 1
r
(ut)

2
r
(ur) 0

0 0 0





plane strain deformation with ut = 0

ur = ur(r)
uz = 0

}

→ ε =
1

2





2ur,r 0 0
0 2

r
(ur) 0

0 0 0




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1.7 Examples

Polar decomposition

II

l, A

α
l0, A0

K

~n1~n2

~n3

~n02

~n01

~n03

I

R = ~n1~n01 + ~n2~n02 + ~n3~n03

= [cos(α)~n01 + sin(α)~n02]~n01 +

[−sin(α)~n01 + cos(α)~n02]~n02 + ~n03~n03

U = λ~n01~n01 + µ~n02~n02 + µ~n03~n03

F = R · U

= λ~n1~n01 + µ~n2~n02 + µ~n3~n03

= λ [cos(α)~n01 + sin(α)~n02]~n01 +

µ [−sin(α)~n01 + cos(α)~n02]~n02 + µ~n03~n03

Inhomogeneous deformation

A rectangular block of material is deformed, as shown in the figure. The basis {~e1, ~e2, ~e3} is
orthonormal. The position vector of an arbitrary material point in undeformed and deformed
state, respectively is :

~x0 = x01~e1 + x02~e2 + x03~e3 ; ~x = x1~e1 + x2~e2 + x03~e3

There is no deformation in ~e3-direction. Deformation in the 12-plane is such that straight
lines remain straight during deformation.

The deformation tensor can be calculated from the relation between the coordinates
of the material point in undeformed and deformed state.
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h

~e2 ~e2

~e1

h0 h0

~e3 ~e3 ~e1

l0 l

x1 =
l

l0
x01 ; x2 = x02 +

h − h0

h0l0
x01x02 ; x3 = x03

F c =
(

~∇0~x
)

=

(

~e01
∂

∂x01
+ ~e02

∂

∂x02
+ ~e03

∂

∂x03

)

(x1~e1 + x2~e2 + x3~e3)

=

(

~e01
∂

∂x01
+ ~e02

∂

∂x02
+ ~e03

∂

∂x03

)

[(

l

l0
x01

)

~e1 +

(

x02 +
h − h0

h0l0
x01x02

)

~e2 + (x03)~e3

]

=

(

l

l0

)

~e01~e1 +

(

h − h0

h0l0
x02

)

~e01~e2 +

(

1 +
h − h0

h0l0
x01

)

~e02~e2 + ~e03~e3

Strain ∼ displacement

The strain-displacement relations for the elongation of line elements can be derived by
considering the elongational deformation of an infinitesimal cube of material e.g. in a tensile
test.
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x

x

x

l0

l
z

y

P Q

P Q

P PQ Qx

y

z dx0

dy0

dz0 dx

dy

dz

y

z

Fig. 1.20 : Homogeneous elongation of a truss

εxx = λxx − 1

=
dx

dx0
− 1

=
dx − dx0

dx0

=
uQ − uP

dx0

=
u(x0 + dx0) − u(x0)

dx0

=
∂u

∂x0
=

∂u

∂x

εyy =
∂v

∂y

εzz =
∂w

∂z

Strain ∼ displacement

The strain-displacement relations for the shear of two line elements can be derived by
considering the shear deformation of an infinitesimal cube of material e.g. in a torsion test.

Q
P

dy0

dz0 ∆v
α

β

θ Px

y

z z

y

x

dx0

∆u

Q

R R

Fig. 1.21 : Shear of a three-dimensional material cube

γxy = π
2 − θxy = α + β ≈ sin(α) + sin(β) =

∆v

dx0
+

∆u

dy0

=
vQ − vP

dx0
+

uR − uP

dy0
=

v(x0 + dx0) − v(x0)

dx0
+

u(y0 + dy0) − u(y0)

dy0



28

=
∂v

∂x0
+

∂u

∂y0
=

∂v

∂x
+

∂u

∂y

γyz =
∂w

∂y
+

∂v

∂z
; γzx =

∂u

∂z
+

∂w

∂x

Strain ∼ displacement

Strain-displacement relations can be derived geometrically in the cylindrical coordinate sys-
tem, as we did in the Cartesian coordinate system.

We consider the deformation of an infinitesimal part in the rθ-plane and determine
the elongational and shear strain components. The dimensions of the material volume in
undeformed state are dr × rdθ × dz.

ur + ur,rdr
φ α

urut + ut,tdθ

ur,tdθ

β ut

ut + ut,rdr
ut

r
(r + dr)

Fig. 1.22 : Deformation of a cylindrical material volume

εrr =
ur,rdr

dr
= ur,r

εtt =
(r + ur)dθ − rdθ

rdθ
+

(ut + ut,tdθ) − ut

rdθ
=

ur

r
+

1

r
ut,t

γrt =
π

2
− φ = α + β =

(

ut,r −
ut

r

)

+

(

1

r
ur,t

)

Strain gages

Strain gages are used to measure strains on the surface of a thin walled pressure vessel.
Three gages are glued on the surface, the second perpendicular to the first one and the
third at an angle of 45o between those two. Measured strains have values εg1, εg2 and εg3.

The linear strain tensor is written in components w.r.t. the Cartesian coordinate system
with its x-axis along the first strain gage. The components εxx, εxy and εyy have to be
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determined from the measured values.
To do this, we use the expression which gives us the strain in a specific direction,

indicated by the unit vector ~n.

εn = ~n · ε ·~n

Because we have three different directions, where the strain is known, we can write this
equation three times.

εg1 = ~ng1 · ε ·~ng1 = n
˜

T
g1ε n

˜
g1 =

[

1 0
]

[

εxx εxy

εyx εyy

] [

1
0

]

= εxx

εg2 = ~ng2 · ε ·~ng2 = n
˜

T
g2ε n

˜
g2 =

[

0 1
]

[

εxx εxy

εyx εyy

] [

0
1

]

= εyy

εg3 = ~ng3 · ε ·~ng3 = n
˜

T
g3ε n

˜
g3 = 1

2

[

1 1
]

[

εxx εxy

εyx εyy

] [

1
1

]

= 1
2(εxx + 2εxy + εyy)

The first two equations immediately lead to values for εxx and εyy and the remaining
unknown, εxy can be solved from the last equation.

εxx = εg1

εyy = εg2

εxy = 2εg3 − εxx − εyy

= 2εg3 − εg1 − εg2















→ ε =

[

εg1 2εg3 − εg1 − εg2

2εg3 − εg1 − εg2 εg2

]

The three gages can be oriented at various angles with respect to each other and with
respect to the coordinate system. However, the three strain components can always be
solved from a set of three independent equations.

Shear strain

A cube is deformed in the 12-plane by simple shear. This means that points on the upper
edge move merely in 1-direction. Lines directed in 2-direction rotate over an angle α around
the 3-axis.
The deformation matrix is :

F =





1 γ 0
0 1 0
0 0 1



 with γ = tan(α)

The right Cauchy-Green deformation matrix is

C = F T F =





1 γ 0
γ 1 + γ2 0
0 0 1





.
The Green-Lagrange strain matrix is

E = 1
2(C − I) =





0 1
2γ 0

1
2γ 1

2γ2 0
0 0 0




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Principal stretch ratios can be calculated from the eigenvalues of C.

det(C − I) = det





1 − µ γ 0
γ 1 + γ2 − µ 0
0 0 1 − µ



 = 0 →

(1 − µ)2(1 + γ2 − µ) − γ2(1 − µ) = 0 →
(1 − µ){(1 − µ)(1 + γ2 − µ) − γ2} = 0 → µ3 = 1 → λ3 =

√
µ3 = 1

and

1 − µ(2 + γ2) + µ2 = 0 →

µ1,2 = 1
2

{

(2 + γ2) ±
√

(2 + γ2)2 − 4
}

=

(

1 +
γ2

2

)

± γ

√

1 +
γ2

4
→

λ1,2 =

√

(

1 +
γ2

2

)

± γ

√

1 +
γ2

4

The linear strain matrix is

ε =





0 1
2γ 0

1
2γ 0 0
0 0 0





The principal strains are

det(ε − I) = det





−ε 1
2γ 0

1
2γ −ε 0
0 0 −ε



 = 0 →

−ε3 + 1
4γ2ε = ε(−ε2 + 1

4γ2) = 0 →
ε3 = 1 ; ε1,2 = ±1

2γ

2 Stresses

Kinematics describes the motion and deformation of a set of material points, considered here
to be a continuous body. The cause of this deformation is not considered in kinematics.
Motion and deformation may have various causes, which are collectively considered here to
be external forces and moments.

Deformation of the material – not its motion alone – results in internal stresses. It is
very important to calculate them accurately, because they may cause irreversible structural
changes and even unallowable damage of the material.

2.1 Stress vector

Consider a material body in the deformed state, with edge and volume forces. The body is
divided in two parts, where the cutting plane passes through the material point P . An edge
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load is introduced on both sides of the cutting plane to prevent separation of the two parts.
In two associated points (= coinciding before the cut was made) in the cutting plane of both
parts, these loads are of opposite sign, but have equal absolute value.

The resulting force on an area ∆A of the cutting plane in point P is ∆~k. The resulting
force per unit of area is the ratio of ∆~k and ∆A. The stress vector ~p in point P is defined as
the limit value of this ratio for ∆A → 0. So, obviously, the stress vector is associated to both
poin P and the cutting plane through this point.

~p

A

~q

V

~q ~p

~n

∆~k
~p

P

∆A

Fig. 2.23 : Cross-sectional stresses and stress vector on a plane

~p = lim
∆A→0

∆~k

∆A

2.1.1 Normal stress and shear stress

The stress vector ~p can be written as the sum of two other vectors. The first is the normal

stress vector ~pn in the direction of the unity normal vector ~n on ∆A. The second vector is in
the plane and is called the shear stress vector ~ps.

The length of the normal stress vector is the normal stress pn and the length of the shear
stress vector is the shear stress ps.

~pn~n

φ

~ps

P

~p

Fig. 2.24 : Stress vector, normal strss and shear stress
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normal stress : pn = ~p ·~n
tensile stress : positive (φ < π

2 )
compression stress : negative (φ > π

2 )
normal stress vector : ~pn = pn~n
shear stress vector : ~ps = ~p − ~pn

shear stress : ps = ||~ps|| =
√

||~p||2 − p2
n

2.2 Cauchy stress tensor

The stress vector can be calculated, using the stress tensor σ, which represents the stress
state in point P . The plane is identified by its unity normal vector ~n. The stress vector is
calculated according to Cauchy’s theorem, which states that in each material point such a
stress tensor must uniquely exist. (∃! : there exists only one.)

Theorem of Cauchy : ∃! tensor σ such that : ~p = σ ·~n

2.2.1 Cauchy stress matrix

With respect to an orthogonal basis, the Cauchy stress tensor σ can be written in compo-
nents, resulting in the Cauchy stress matrix σ, which stores the components of the Cauchy
stress tensor w.r.t. an orthonormal vector base {~e1, ~e2, ~e3}. The components of the Cauchy
stress matrix are components of stress vectors on the planes with unit normal vectors in the
coordinate directions.

With our definition, the first index of a stress component indicates the direction of the
stress vector and the second index indicates the normal of the plane where it is loaded. As
an example, the stress vector on the plane with ~n = ~e1 is considered.

p3 ~p

~e1

~e2

~e3
p1

p2

Fig. 2.25 : Components of stress vector on a plane

~p = σ ·~n → ~e
˜
T p
˜

= ~e
˜
T σ ~e

˜
·~e
˜
T n
˜

= ~e
˜
T σ n

˜
~n = ~e1 →
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



p1

p2

p3



 =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33









1
0
0



 =





σ11

σ21

σ31





The components of the Cauchy stress matrix can be represented as normal and shear stresses
on the side planes of a stress cube.

σ12

~e1

~e3

~e2

σ11

σ21

σ31

σ13

σ23

σ33

σ32

σ22

Fig. 2.26 : Stress cube

σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33





Cartesian components

In the Cartesian coordinate system the stress cube sides are parallel to the Cartesian coordi-
nate axes. Stress components are indicated with the indices x, y and z.
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σyz

σzz

~ex

~ey

~ez

σxz
σzy

σyy

σxy

σxx

σyx

σzx

Fig. 2.27 : Cartesian stress cube

σ =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz





Cylindrical components

In the cylindrical coordinate system the stress ’cube’ sides are parallel to the cylindrical
coordinate axes. Stress components are indicated with the indices r, t and z.

σtz

r

z

θ

σrr

σtt

σzr

σtr

σrt

σzt

σzz

σrz

Fig. 2.28 : Cylindrical stress ”cube”

σ =





σrr σrt σrz

σtr σtt σtz

σzr σzt σzz





2.2.2 Principal stresses and directions
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It will be shown later that the stress tensor is symmetric. This means that it has three real-
valued eigenvalues {σ1, σ2, σ3} and associated eigenvectors {~n1, ~n2, ~n3}. The eigenvectors are
normalized to have unit length and they are mutually perpendicular, so they constitute an
orthonormal vector base. The stress matrix w.r.t. this vector base is diagonal.

The eigenvalues are referred to as the principal stresses and the eigenvectors as the
principal stress directions. The stress cube with the normal principal stresses is referred to
as the principal stress cube.

Using the spectral representation of σ, it is easily shown that the stress tensor changes
as a result of a rigid body rotation Q.

σ3
z

y

O x

t0
t

P P

2

3

1

σ1

σ2

Fig. 2.29 : Principal stress cube with principal stresses

spectral form
σ ·~n1 = σ1~n1

σ ·~n2 = σ2~n2

σ ·~n3 = σ3~n3







→ σ = σ1~n1~n1 + σ2~n2~n2 + σ3~n3~n3

principal stress matrix σP =





σ1 0 0
0 σ2 0
0 0 σ3





Stress transformation

We consider the two-dimensional plane with principal stress directions coinciding with the
unity vectors ~e1 and ~e2. The principal stresses are σ1 and σ2. On a plane which is rotated
anti-clockwise from ~e1 over an angle α < π

2 the stress vector ~p and its normal and shear
components can be calculated. They are indicated as σα and τα respectively.

σ2

σ1

σα

τα

α

area 1

~e2

~e1

area cos

area sin
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Fig. 2.30 : Normal and shear stress on a plane

σ = σ1~e1 + σ2~e2

~n = − sin(α)~e1 + cos(α)~e2

~p = σ ·~n = −σ1 sin(α)~e1 + σ2 cos(α)~e2

σα = σ1 sin2(α) + σ2 cos2(α)

τα = (σ2 − σ1) sin(α) cos(α)

Mohr’s circles of stress

From the relations for the normal and shear stress on a plane in between two principal stress
planes, a relation between these two stresses and the principal stresses can be derived. The
resulting relation is the equation of a circle in the σατα-plane, referred to as Mohr’s circle for
stress. The radius of the circle is 1

2(σ1−σ2). The coordinates of its center are {1
2 (σ1 +σ2), 0}.

Stresses on a plane, which is rotated over α w.r.t. a principal stress plane, can be found
in the circle by rotation over 2α.

Because there are three principal stresses and principal stress planes, there are also three
stress circles. It can be proven that each stress state is located on one of the circles or in the
shaded area.

σα = σ1 sin2(α) + σ2 cos2(α)

= σ1(
1
2 − 1

2 cos(2α)) + σ2(
1
2 + 1

2 cos(2α))

= 1
2(σ1 + σ2) − 1

2(σ1 − σ2) cos(2α) →
(1)

{

σα − 1
2(σ1 + σ2)

}2
=

{

1
2(σ1 − σ2)

}2
cos2(2α)

τα = − cos(α) sin(α)σ1 + cos(α) sin(α)σ2 = 1
2(σ2 − σ1) sin(2α) →

(2) τ2
α =

{

1
2(σ2 − σ1)

}2
sin2(2α)

(1) + (2) →
{

σα − 1
2 (σ1 + σ2)

}2
+ τ2

α =
{

1
2 (σ1 − σ2)

}2

τ

σσ1σ2

τα

σα σm

2α

σ1

σ

τ

σ3 σ2

Fig. 2.31 : Mohr’s circles
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That there are three circles can be demonstrated by considering a random stress state {σ, τ}
in the στ -plane. The stress circles are subsequentially translated by superposition of a hydro-
static stress −1

2(σ1 + σ3), −1
2(σ2 + σ1) and −1

2(σ3 + σ2). With the use of the stress vector ~p
and the stress matrix σ∗, resulting after superposition, it can be proven that the stress state
is inside the largest stress circle and outside the other two.

inside σ1, σ3-circle

{σ − 1
2(σ1 + σ3)}2 + τ2 = σ2 + τ2 = ||~p||2 = ~p · ~p = n

˜
T σT σ n

˜
= n2

1α
2 + n2

2β
2 + n2

3α
2

with β2 =
(

σ2 − 1
2 (σ1 + σ3)

)2 ≤ α2 =
(

σ1 − 1
2(σ1 + σ3)

)2 → σ2 + τ2 ≤ α2

outside σ2, σ3-circle

{σ − 1
2(σ3 + σ2)}2 + τ2 = σ2 + τ2 = ||~p||2 = ~p · ~p = n

˜
T σT σ n

˜
= n2

1β
2 + n2

2α
2 + n2

3α
2

with β2 =
(

σ1 − 1
2 (σ3 + σ2)

)2 ≥ α2 =
(

σ2 − 1
2(σ3 + σ2)

)2 → σ2 + τ2 ≥ α2

outside σ1, σ2-circle

{σ − 1
2(σ1 + σ2)}2 + τ2 = σ2 + τ2 = ||~p||2 = ~p · ~p = n

˜
T σT σ n

˜
= n2

1α
2 + n2

2α
2 + n2

3β
2

with β2 =
(

σ3 − 1
2 (σ1 + σ2)

)2 ≥ α2 =
(

σ2 − 1
2(σ1 + σ2)

)2 → σ2 + τ2 ≥ α2

2.3 Special stress states

Some special stress states are illustrated here. Stress components are considered in the Carte-
sian coordinate system.

2.3.1 Uni-axial stress

An unidirectional stress state is what we have in a tensile bar or truss. The axial load N
in a cross-section (area A in the deformed state) is the integral of the axial stress σ over A.
For homogeneous material the stress is uniform in the cross-section and is called the true or
Cauchy stress. When it is assumed to be uniform in the cross-section, it is the ratio of N
and A. The engineering stress is the ratio of N and the initial cross-sectional area A0, which
makes calculation easy, because A does not have to be known. For small deformations it is
obvious that A ≈ A0 and thus that σ ≈ σn.
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x

z

N N

y

P

y

x

z

P

σxxσxx

x

Fig. 2.32 : Stresses on a small material volume in a tensile bar

true or Cauchy stress σ =
N

A
= σxx → σ = σxx~ex~ex

engineering stress σn =
N

A0

2.3.2 Hydrostatic stress

A hydrostatic loading of the material body results in a hydrostatic stress state in each material
point P . This can again be indicated by stresses (either tensile or compressive) on a stress
cube. The three stress variables, with the same value, are normal to the faces of the stress
cube.
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y

z

x

x

z

p

p

p

p

p

σyy = −p

p

y

σxx = p

σyy = p

σzz = p

σxx = −p

σzz = −p

σ = p(~ex~ex + ~ey~ey + ~ez~ez)
σ = −p(~ex~ex + ~ey~ey + ~ez~ez)

Fig. 2.33 : Stresses on a material volume under hydrostatic loading

2.3.3 Shear stress

The axial torsion of a thin-walled tube (radius R, wall thickness t) is the result of an axial
torsional moment (torque) T . This load causes a shear stress τ in the cross-sectional wall.
Although this shear stress has the same value in each point of the cross-section, the stress
cube looks differently in each point because of the circumferential direction of τ .

τ = σzx

x

z

y τ τ

τ

τ

τ
τ

τ

τ

τ = −σyx

τ = −σzx

τ = σyxT τ =
T

2πR2t

Fig. 2.34 : Stresses on a small material volume in the wall of a tube under shear loading

σ = τ(~ei~ej + ~ej~ei) with i 6= j
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2.3.4 Plane stress

When stresses on a plane perpendicular to the 3-direction are zero, the stress state is referred
to as plane stress w.r.t. the 12-plane. Only three stress components are relevant in this case.

~e1

~e3

~e2

σ11

σ22

σ12

σ21

Fig. 2.35 : Stress cube for plane stress in 12-plane

σ33 = σ13 = σ23 = 0 → σ ·~e3 = ~0 →
relevant stresses : σ11, σ22, σ12

2.4 Resulting force on arbitrary material volume

A material body with volume V and surface area A is loaded with a volume load ~q per unit of
mass and by a surface load ~p per unit of area. Taking a random part of the continuum with
volume V̄ and edge Ā, the resulting force can be written as an integral over the volume, using
Gauss’ theorem. The load ρ~q is a volume load per unit of volume, where ρ is the density of
the material.

A

V

~q
V̄

~p

~p

Ā

Fig. 2.36 : Forces on a random section of a material body

~K =

∫

V̄

ρ~q dV +

∫

Ā

~p dA =

∫

V̄

ρ~q dV +

∫

Ā

~n ·σT dA
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Gauss theorem :

∫

Ā

~n · ( ) dA =

∫

V̄

~∇ · ( ) dV →

~K =

∫

V̄

[ρ~q + ~∇ ·σT ] dV

2.5 Resulting moment on arbitrary material volume

The resulting moment about a fixed point of the forces working in volume and edge points of
a random part of the continuum body can be calculated by integration.

~x

~p

A

V

Ā
~q

~p

V̄

O

Fig. 2.37 : Moments of forces on a random section of a material body

~MO =

∫

V̄

~x ∗ ρ~q dV +

∫

Ā

~x ∗ ~p dA

Resulting moment on total body

Obviously we can also calculate the resulting moment for the whole material volume. By
introducing a special point R other than the origin, the resulting moment can be expressed
in the resulting moment about this point anf the moment of the resulting forces about this
point. Often the resulting moment is considered with respect to the center of mass M with
position ~xM .

~MO =

∫

V

~x ∗ ρ~q dV +

∫

A

~x ∗ ~p dA

=

∫

V

(~xR + ~r) ∗ ρ~q dV +

∫

A

(~xR + ~r) ∗ ~p dA
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= ~xR ∗
∫

V

ρ~q dV + ~xR ∗
∫

A

~p dA +

∫

V

~r ∗ ρ~q dV +

∫

A

~r ∗ ~p dA

= ~xR ∗ ~K + ~MR

= ~xM ∗ ~K + ~MM →

~MR = (~xM − ~xR) ∗ ~K + ~MM = ~rM ∗ ~K + ~MM
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2.6 Example

Principal stresses and stress directions

The stress state in a material point P is characterized by the stress tensor σ, which is given
in comonents with respect to an orthonormal basis {~e1, ~e2, ~e3} :

σ = 10~e1~e1 + 6(~e1~e2 + ~e2~e1) + 10~e2~e2 + ~e3~e3

The principal stresses are the eigenvalues of the tensor, which can be calculated as follows :

det





10 − σ 6 0
6 10 − σ 0
0 0 1 − σ



 = 0 →

(10 − σ)2(1 − σ) − 36(1 − σ) = 0

(1 − σ){(10 − σ)2 − 36} = 0

(1 − σ)(16 − σ)(4 − σ) = 0 → σ1 = 16 ; σ2 = 4 ; σ3 = 1

The eigenvectors are the principal stress directions.

σ1 = 16 →





−6 6 0
6 −6 0
0 0 −15









α1

α2

α3



 =





0
0
0



 →

α1 = α2 ; α3 = 0

α2
1 + α2

2 + α2
3 = 1

}

→ ~n1 = 1
2

√
2~e1 + 1

2

√
2~e2

idem : ~n2 = −1
2

√
2~e1 + 1

2

√
2~e2 ; ~n3 = ~e3

The average or hydrostatic stress can be calculated, leading to the hydrostatic stress tensor.
The deviatoric stress tensor is the difference of the total stress tensor and the hydrostatic
stress tensor.

σm = 1
3tr(σ) = 7

σh = 1
3tr(σ)I

σd = σ − σh = σ − 1
3tr(σ)I

= {10~e1~e1 + 6(~e1~e2 + ~e2~e1) + 10~e2~e2 + ~e3~e3} − 7I

= 3~e1~e1 + 6(~e1~e2 + ~e2~e1) + 3~e2~e2 − 6~e3~e3
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3 Balance or conservation laws

In every physical process, so also during deformation of continuum bodies, some general ac-
cepted physical laws have to be obeyed : the conservation laws. During deformation the total
mass has to be preserved and also the total momentum and moment of momentum. Because
we do not consider dissipation and thermal effects, we will not discuss the conservation law
for total energy.

3.1 Balance of mass

The mass of each finite, randomly chosen volume of material points in the continuum body
must remain the same during the deformation process. Because we consider here a finite
volume, this is the so-called global version of the mass conservation law.

From the requirement that this global law must hold for every randomly chosen volume,
the local version of the conservation law can be derived. This derivation uses an integral
transformation, where the integral over the volume V̄ in the deformed state is transformed
into an integral over the volume V̄0 in the undeformed state. From the requirement that the
resulting integral equation has to be satisfied for each volume V̄0, the local version of the mass
balance results.

The local version, which is also referred to as the continuity equation, can also be derived
directly by considering the mass dM of the infinitesimal volume dV of material points.

The time derivative of the mass conservation law is also used frequently. Because we
focus attention on the same material particles, a so-called material time derivative is used,
which is indicated as (˙).

A

V

V0

t0

A0
V̄V̄0

t

Fig. 3.38 : Random volume in undeformed and deformed state

∫

V̄

ρ dV =

∫

V̄0

ρ0 dV0 ∀ V̄ →
∫

V̄0

(ρJ − ρ0) dV0 = 0 ∀ V̄0 →

ρJ = ρ0 ∀ ~x ∈ V (t)

dM = dM0 → ρdV = ρ0dV0 → ρJ = ρ0 ∀ ~x ∈ V (t) → ρ̇J + ρJ̇ = 0



45

3.2 Balance of momentum

According to the balance of momentum law, a point mass m which has a velocity ~v, will change
its momentum ~i = m~v under the action of a force ~K. Analogously, the total force working
on a randomly chosen volume of material points equals the change of the total momentum of
the material points inside the volume. In the balance law, again a material time derivative
is used, because we consider the same material points. The total force can be written as a
volume integral of volume forces and the divergence of the stress tensor.

~q

A

V

V̄

t

Ā

~p

V̄

Fig. 3.39 : Forces on random section of a material body

~K =
D~i

Dt
=

D

Dt

∫

V̄

ρ~v dV ∀ V̄ →

=
D

Dt

∫

V̄0

ρ~vJ dV0 =

∫

V̄0

D

Dt
(ρ~vJ) dV0 ∀ V̄0

=

∫

V̄0

(

ρ̇~vJ + ρ~̇vJ + ρ~vJ̇
)

dV0 ∀ V̄0

mass balance : ρ̇J + ρJ̇ = 0 →

=

∫

V̄0

ρ~̇vJ dV0 =

∫

V̄

ρ~̇v dV ∀ V̄

∫

V̄

(

ρ~q + ~∇ ·σc
)

dV =

∫

V̄

ρ~̇v dV ∀ V̄

From the requirement that the global balance law must hold for every randomly chosen volume
of material points, the local version of the balance of momentum can be derived, which must
hold in every material point. In the derivation an integral transformation is used.

The local balance of momentum law is also called the equation of motion. For a stationary
process, where the material velocity ~v in a fixed spatial point does not change, the equation
is simplified. For a static process, where there is no acceleration of masses, the equilibrium

equation results.
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local version : equation of motion ~∇ ·σc + ρ~q = ρ~̇v = ρ
δ~v

δt
+ ρ~v ·

(

~∇~v
)

∀ ~x ∈ V (t)

stationary

(

δ~v

δt
= 0

)

~∇ ·σc + ρ~q = ρ~v ·

(

~∇~v
)

static : equilibrium equation ~∇ ·σc + ρ~q = ~0

3.2.1 Cartesian and cylindrical components

The equilibrium equation can be written in components w.r.t. a Cartesian vector basis. This
results in three partial differential equations, one for each coordinate direction.

σxx,x + σxy,y + σxz,z + ρqx = 0

σyx,x + σyy,y + σyz,z + ρqy = 0

σzx,x + σzy,y + σzz,z + ρqz = 0

Writing tensor and vectors in components w.r.t. a cylindrical vector basis is more elaborative
because the cylindrical base vectors ~er and ~et are a function of the coordinate θ, so they have
to be differentiated, when expanding the divergence term.

σrr,r +
1

r
σrt,t +

1

r
(σrr − σtt) + σrz,z + ρqr = 0

σtr,r +
1

r
σtt,t +

1

r
(σtr + σrt) + σtz,z + ρqt = 0

σzr,r +
1

r
σzt,t +

1

r
σzr + σzz,z + ρqz = 0

3.3 Balance of moment of momentum

The balance of moment of momentum states that the total moment about a fixed point of
all forces working on a randomly chosen volume of material points ( ~MO), equals the change
of the total moment of momentum of the material points inside the volume, taken w.r.t. the
same fixed point (~LO).
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~x

A

V

V̄

t

Ā

~p

V̄
~q

O

Fig. 3.40 : Moment of forces on a random section of a material body

~MO =
D~LO

Dt
=

D

Dt

∫

V̄

~x ∗ ρ~v dV ∀ V̄

=
D

Dt

∫

V̄0

~x ∗ ρ~vJ dV0 =

∫

V̄0

D

Dt
(~x ∗ ρ~vJ) dV0 ∀ V̄0

=

∫

V̄0

(

~̇x ∗ ρ~vJ + ~x ∗ ρ̇~vJ + ~x ∗ ρ~̇vJ + ~x ∗ ρ~vJ̇
)

dV0 ∀ V̄0

mass balance : ρ̇J + ρJ̇ = 0

~̇x ∗ ~v = ~v ∗ ~v = ~0

}

→

=

∫

V̄0

~x ∗ ρ~̇vJ dV0 =

∫

V̄

~x ∗ ρ~̇v dV ∀ V̄

∫

V̄

~x ∗ ρ~q dV +

∫

Ā

~x ∗ ~p dA =

∫

V̄

~x ∗ ρ~̇v dV ∀ V̄

For the analysis of the dynamics of deformable and rigid bodies the balance law is often
reformulated, such that its motion is the superposition a rotation about the center of rotation
R and its translation. In appendix ?? this is elaborated.

To derive a local version, the integral over the area Ā has to be transformed to an
integral over the enclosed volume V̄ . In this derivation, the operator 3ǫ is used, which is
defined such that

~a ∗~b = 3ǫ : ~a~b

holds for all vectors ~a and ~b.
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∫

Ā

~x ∗ ~p dA =

∫

Ā

3ǫ : (~x ~p) dA =

∫

Ā

3ǫ : (~xσ ·~n) dA =

∫

Ā

~n · {3ǫ : (~xσ)}c dA

=

∫

V̄

~∇ · {3ǫ : (~xσ)}c dV

=

∫

V̄

~∇ · {(~xσ)c : 3ǫ
c} dV =

∫

V̄

~∇ · {(σc~x) : 3ǫ
c} dV

=

∫

V̄

[

(~∇ ·σc)~x : 3ǫ
c
+ σ · (~∇ · ~x) : 3ǫ

c
]

dV

=

∫

V̄

[

(~∇ ·σc)~x : 3ǫ
c
+ σ : 3ǫ

c
]

dV =

∫

V̄

[

3ǫ : ~x(~∇ ·σc) + 3ǫ : σc
]

dV

=

∫

V̄

3ǫ : σc + ~x ∗ (~∇ ·σc) dV

Substitution in the global version and using the local balance of momentum, leads to the local
version of the balance of moment of momentum.

∫

V̄

~x ∗ ρ~q dV +

∫

V̄

3ǫ : σc dV +

∫

V̄

~x ∗ (~∇ ·σc) dV =

∫

V̄

~x ∗ ρ~̇v dV ∀ V̄ →

∫

V̄

~x ∗
[

ρ~q + (~∇ ·σc) − ρ~̇v
]

dV +

∫

V̄

3ǫ : σc dV = ~0 ∀ V̄ →

∫

V̄

3ǫ : σc dV = ~0 ∀ V̄ → 3ǫ : σc = ~0 ∀ ~x ∈ V̄





σ32 − σ23

σ13 − σ31

σ21 − σ12



 =





0
0
0





σc = σ ∀ ~x ∈ V (t)

3.3.1 Cartesian and cylindrical components

With respect to a Cartesian or cylindrical basis the symmetry of the stress tensor results in
three equations.

σ = σT →

Cartesian : σxy = σyx ; σyz = σzy ; σzx = σxz

cylindrical : σrt = σtr ; σtz = σzt ; σzr = σrz
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3.4 Balance of energy

The first law of thermodynamics states that the total amount of energy supplied to a material
body is converted to kinetic energy (Uk) and internal energy (Ui). The supplied energy is
considered to be 1) work done by external mechanical loads (Ue), and 2) thermal energy
supplied by internal sources or external fluxes (Ut). The internal energy can be of very
different character, such as elastically stored energy and dissipated energy due to plastic
deformation, viscous effects, crack growth, etcetera.

D

Dt
(Ue + Ut) =

D

Dt
(Uk + Ui)

3.4.1 Mechanical energy

When a point load ~k is applied in a material point and the point moves with a velocity ~v,
the work of the load per unit of time is U̇e = ~k ·~v. For a random volume V̄ with edge Ā
inside a material body the mechanical work of all loads per unit of time can be calculated.
Using Gauss’ theorem, this work can be written as an integral over the volume V̄ . Also the
equation of motion is used to arrive at the final result.

~q

A

V

V̄

t

Ā

~p

V̄

Fig. 3.41 : Mechanical load on a material volume

U̇e =

∫

V̄

ρ~q ·~v dV +

∫

Ā

~p ·~v dA =

∫

V̄

{ρ~q ·~v + ~∇ · (σc
·~v)} dV

~∇ · (σc
·~v) = (~∇ ·σc) ·~v + σ : (~∇~v)

= ρ~̇v ·~v − ρ~q ·~v + σ : D + σ : Ω

=

∫

V̄

(ρ~̇v ·~v + σ : D) dV

3.4.2 Thermal energy

Thermal energy can be produced by internal sources. The heat production per unit of mass
is r [J kg−1].
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Heat can flow in or out of a material body or in the body from one part to another. In
a material point P the heat flux vector is ~H [J]. The heat flux density vector in P through a
plane with area ∆A is

~h = lim
∆A→0

~H

∆A
[J m−2]

The resulting heat flux in P through the plane is ~n ·~h [J m−2] , where ~n is the unit normal
vector on the plane.

For a random volume V̄ having edge Ā with unit normal outward vector ~n, the increase
in thermal energy at time t is U̇t.

r
A

V

V̄

t

Ā
V̄

~h

r

Fig. 3.42 : Heat sources in and heat flux into a material volume

U̇t =

∫

V̄

ρr dV −
∫

Ā

~n ·~h dA =

∫

V̄

(ρr − ~∇ ·~h) dV

3.4.3 Kinetic energy

The kinetic energy of a point mass m with velocity ~v is

Uk = 1
2 m ||~v||2 = 1

2 m ~v ·~v

For a random volume V̄ of material points, having density ρ and velocity ~v, the total kinetic
energy Uk can be calculated by intergration.

Uk(t) =

∫

V̄

1
2 ρ ~v ·~v dV → U̇k =

D

Dt

∫

V̄

1
2 ρ ~v ·~v dV =

D

Dt

∫

V̄0

1
2 ρ ~v ·~vJ dV0

= 1
2

∫

V̄0

{

ρ̇ ~v ·~vJ + 2ρ ~̇v ·~vJ + ρ~v ·~vJ̇
}

dV0

=

∫

V̄0

ρ ~̇v ·~vJ dV0 =

∫

V̄

ρ ~̇v ·~v dV
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3.4.4 Internal energy

The internal energy per unit of mass is φ. The total internal energy of all material points in
a random volume V̄ of a material body, Ui, can be calculated by integration.

Ui(t) =

∫

V̄

ρφ dV → U̇i =
D

Dt

∫

V̄

ρφ dV =
D

Dt

∫

V̄0

ρφJ dV0

=

∫

V̄0

{

ρ̇φJ + ρφ̇J + ρφJ̇
}

dV0

=

∫

V̄

ρφ̇ dV

3.4.5 Energy balance

The energy balance or first law of thermodynamics for a random volume of material points in
a material body, can be written as an integral equation. It is the global form of the balance
law, because a finite volume is considered.

U̇e + U̇t = U̇k + U̇i

∫

V̄

(ρ~̇v ·~v + σ : D + ρr − ~∇ ·~h) dV =

∫

V̄

(ρ~̇v ·~v + ρφ̇) dV ∀ V̄

∫

V̄

ρφ̇ dV =

∫

V̄

(σ : D + ρr − ~∇ ·~h) dV ∀ V̄

3.4.6 Energy equation

The local version of the energy balance, also called the energy equation, is easily derived by
taking into account the fact that the global version must be valid for each volume V̄ .

The specific internal energy φ can be written as the product of the specific heat Cp

(assumed to be constant here) and the absolute temperature T .
The heat flux density ~h is often related to the temperature gradient ~∇T accoding to

Fourier’s law, with the thermal conductivity tensor K.

ρφ̇ + ~∇ ·~h = σ : D + ρr ∀ ~x ∈ V (t)

φ̇ = CpṪ (Cp : specific heat)















→
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ρCpṪ + ~∇ ·~h = σ : D + ρr ∀ ~x ∈ V (t)

Fourier’s law ~h = −K · (~∇T )















→

ρCpṪ − ~∇ ·

{

K ·

(

~∇T
)}

= σ : D + ρr

ρCpṪ − (~∇ · K) · (~∇T ) − K : (~∇~∇T )c = σ : D + ρr

homogeneous conductivity : ~∇ · K = ~0 →

ρCpṪ − K : (~∇~∇T )c = σ : D + ρr

ρCp
δT

δt
+ ρCp~v · (~∇T ) − K : (~∇~∇T )c = σ : D + ρr

Energy equation : Cartesian components

orthotropic conductivity K = kx~ex~ex + ky~ey~ey + kz~ez~ez

ρCp
δT

δt
+ ρCp (vxT,x + vyT,y + vzT,z) − kxT,xx − kyT,yy − kzT,zz

= σxxvx,x + σyyvy,y + σzzvz,z + ρr

two-dimensional (in xy-plane only)

ρCp
δT

δt
+ ρCp (vxT,x + vyT,y) − kxT,xx − kyT,yy = σxxvx,x + σyyvy,y + ρr

one-dimensional ( in x-direction only; kx = k )

ρCp
δT

δt
+ ρCpvxT,x − kT,xx = σxxvx,x + ρr

no convection (vx = vx,x = 0)

ρCp
δT

δt
− kT,xx = ρr

no heat source/sinc

ρCp
δT

δt
− kT,xx = 0

stationary

T,xx = 0

solution

T (x) = c0 + c1x
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Energy equation : Cylindrical components

orthotropic conductivity K = kr~er~er + kt~et~et + kz~ez~ez

ρCp
δT

δt
+ ρCp(vr~er + vt~et + vz~ez) · (T,r~er +

1

r
T,t~et + T,z~ez)

−
(

~er
∂

∂r
+ ~et

1

r

∂

∂θ
+ ~ez

∂

∂z

)(

~er
∂T

∂r
+ ~et

1

r

∂T

∂θ
+ ~ez

∂T

∂z

)

: (kr~er~er + kt~et~et + kz~ez~ez)

= σrrvr,r + σttvt,t + σzzvz,z + ρr

ρCp
δT

δt
+ ρCp(vrT,r +

1

r
vtT,t + vzT,z)

−
(

~er~erT,rr − ~er~et
1

r2
T,t + ~er~et

1

r
T,rt + ~er~ezT,rz + ~et~et

1

r
T,r + ~et~er

1

r
T,tr − ~et~er

1

r2
T,t + ~et~et

1

r2
T,tt+

~et~ez
1

r
T,tz + ~ez~erT,zr + ~ez~et

1

r
T,zt + ~ez~ezT,zz

)

: (kr~er~er + kt~et~et + kz~ez~ez) = σrrvr,r + σttvt,t + σzzvz,z + ρr

ρCp
δT

δt
+ ρCp(vrT,r +

1

r
vtT,t + vzT,z)

−
(

T,rrkr +
1

r
T,rkt +

1

r2
T,ttkt + T,zzkz

)

= σrrvr,r + σttvt,t + σzzvz,z + ρr

Axi-symmetry

ρCp
δT

δt
+ ρCp (vrT,r + vzT,z) −

(

T,rrkr +
1

r
T,rkt + T,zzkz

)

= σrrvr,r + σzzvz,z + ρr

two-dimensional ( polar; rt-plane)

ρCp
δT

δt
+ ρCpvrT,r − krT,rr − kt

1

r
T,r = σrrvr,r + ρr

stationary ( δT
δt

= 0 )

ρCpvrT,r − krT,rr − kt
1

r
T,r = σrrvr,r + ρr

isotropic thermal conductivity ( kr = kt = k )

ρCpvrT,r − kT,rr − k
1

r
T,r = σrrvr,r + ρr

no convection ( vr = vr,r = 0 )

−kT,rr − k
1

r
T,r = ρr

no heat source/sinc

T,rr +
1

r
T,r = 0

solution

T = ra → a(a − 1)ra−2 + r−1ara−1 = 0 → a = 0 → T = c0 + c1r
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3.4.7 Mechanical power for three-dimensional deformation

Elastic deformation of a three-dimensional continuum leads to storage of elastic energy, which
can be calculated per unit of undeformed (W0) or deformed (W ) volume. Different expressions
for the strain rate can than be combined with different stress tensors, which are all a function
of the Cauchy stress tensor σ. The starting point is the change of stored energy per unit of
deformed volume.

Ẇ = σ : D σ = Cauchy stress tensor

Ẇ0 = [Jσ] : D

= κ : D κ = Kirchhoff stress tensor

Ẇ0 = Jσ : D = Jσ : 1
2

(

Ḟ ·F−1 + (Ḟ ·F−1)c
)

=

= Jσ :
(

Ḟ ·F−1
)

= J
(

F−1
·σ

)

: Ḟ = S : Ḟ = S : U̇

= S : Ė S = 1st-Piola-Kirchhoff stress tensor

Ẇ0 = Jσ : D = Jσ :
(

F−c
· Ė ·F−1

)

= J
(

F−1
· σ ·F−c

)

: Ė

= P : Ė P = 2nd-Piola-Kirchhoff stress tensor

3.5 Special equilibrium states

The three-dimensional equilibrium equations can be simplified for special deformation or
stress states, such as plane strain, plane stress and axisymmetric cases.

Planar deformation

It is assumed here that the z-direction is the direction where either the strain or the stress
is zero. Only stresses and strains in the plane perpendicular to the z-direction remain to
be determined from equilibrium. The strain or stress in the z-direction can be calculated
afterwards, either directly from the material law or iteratively during the solution procedure.

Cartesian components

σxx,x + σxy,y + ρqx = 0

σyx,x + σyy,y + ρqy = 0

σxy = σyx

cylindrical components
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σrr,r +
1

r
σrt,t +

1

r
(σrr − σtt) + ρqr = 0

σtr,r +
1

r
σtt,t +

1

r
(σtr + σrt) + ρqt = 0

σrt = σtr

Axisymmetric deformation

In many cases the geometry, boundary conditions and material behavior is such that no
state variable depends on the circumferential coordinate θ : ∂

∂θ
= 0. For such axisymmetric

deformations, the equilibrium equations can be simplified considerably.
In many axisymmetric deformations the boundary conditions are such that there is no

displacement in the circumferential direction : ut = 0. In these cases there are only four
relevant strain and stress components and only three equilibrium equations.

When boundary conditions and material behavior are such that displacement of material
points are only in the rθ-plane, the deformation is referred to as plane strain in the rθ-plane.

When stresses on a plane perpendicular to the z-direction are zero, the stress state is
referred to as plane stress w.r.t. the rθ-plane.

σrr,r +
1

r
(σrr − σtt) + σrz,z + ρqr = 0

σtr,r +
2

r
(σtr) + σtz,z + ρqt = 0 (if ut 6= 0)

σzr,r +
1

r
σzr + σzz,z + ρqz = 0

σrt = σtr ; σtz = σzt (if ut 6= 0)

σzr = σrz

planar

σrr,r +
1

r
(σrr − σtt) + ρqr = 0

σtr,r +
2

r
(σtr) + ρqt = 0 (if ut 6= 0)

σrt = σtr (if ut 6= 0)

3.6 Examples

Equilibrium of forces : Cartesian

The equilibrium equations in the three coordinate directions can be derived by considering
the force equilibrium of the Cartesian stress cube.
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σyz + σyz,zdz
σxz + σxz,zdz

σzz + σzz,zdz

σyz

σxz

σzz

z

y
x

σyy

σyx

σyy + σyy,ydy

σxy

σzy
σxx

σzx

σxy + σxy,ydy

σzy + σzy,ydy

σxx + σxx,xdx
σyx + σyx,xdx
σzx + σzx,xdx

(σxx + σxx,xdx)dydz + (σxy + σxy,ydy)dxdz + (σxz + σxz,zdz)dxdy −
(σxx)dydz − (σxy)dxdz − (σxz)dxdy + ρqxdxdydz = 0

σxx,x + σxy,y + σxz,z + ρqx = 0

Equilibrium of moments : Cartesian

The forces, working on the Cartesian stress cube, have a moment w.r.t. a certain point in
space. The sum of all the moments must be zero. We consider the moments of forces in
the xy-plane w.r.t. the z-axis through the center of the cube. Anti-clockwise moments are
positive.

σxx(x) σxx(x + dx)

σyy(y + dy)

σxy(y)

σxy(y + dy)

σyx(x + dx)σyx(x)

σyy(y)
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σyxdydz 1
2dx + σyxdydz 1

2dx + σyx,xdxdydz 1
2dx

− σxydxdz 1
2dy − σxydxdz 1

2dy − σxy,xdxdydz 1
2dy = 0

σyx − σxy = 0 → σyx = σxy

Equilibrium of forces : cylindrical

The equilibrium equations in the three coordinate directions can be derived by considering
the force equilibrium of the cylindrical stress ’cube’. Here only the equilibrium in r-direction
is considered. The stress components are a function of the three cylindrical coordinates r,
θ and z, but only the relevant (changing) ones are indicated.

r dr

dθ

σrr(r)

σrr(r + dr)

σtt(θ)

σtt(θ + dθ)

σrt(θ)

σrt(θ + dθ)

σtr(r)
σtr(r + dr)σrz(z)

σrz(z + dz)

ρqr

−σrr(r)rdθdz − σrz(z)rdrdθ − σrt(θ)drdz − σtt(θ)dr 1
2dθdz

+ σrr(r + dr)(r + dr)dθdz + σrz(z + dz)rdrdθ

+ σrt(θ + dθ)drdz − σtt(θ + dθ)dr 1
2dθdz + ρqrrdrdθdz = 0

σrr,rrdrdθdz + σrrdrdθdz + σrz,zrdrdθdz + σrt,tdrdθdz

− σtt(θ)drdθdz + ρqrdrdθdz = 0

σrr,r +
1

r
σrr + σrz,z +

1

r
σrt,t −

1

r
σtt + ρqr = 0
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Equilibrium of moments : cylindrical

The forces, working on the cylindrical stress cube, have a moment w.r.t. a certain point in
space. The sum of all the moments mus be zero. We consider the moments of forces in
the rθ-plane w.r.t. the z-axis through the center of the cube.

r dr

dθ

σrr(r)

σrr(r + dr)

σtt(θ)

σtt(θ + dθ)

σrt(θ)

σrt(θ + dθ)

σtr(r)
σtr(r + dr)σrz(z)

σrz(z + dz)

ρqr

σtr(r)rdθdz 1
2dr + σtr(r + dr)(r + dr)dθdz 1

2dr

− σrt(θ)drdz 1
2rdθ − σrt(θ + dθ)drdz 1

2rdθ = 0

σtrrdrdθdz − σrtrdrdθdz = 0 → σtr = σrt

Equilibrium of heat flow : cylindrical

Heat is flowing out of the volume, so the change in temperature is negative.

hr

hz

hr + ∂hr

∂r
dr

hz + ∂hz

∂z
dz

dθ

z

θ

r
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−ρCprdθdrdz
∂T

∂t
=

(

hr +
∂hr

∂r
dr

)

(r + dr)dθdz − hrrdθdz +

(

hz +
∂hz

∂z

)

rdθdr − hzrdθdz

linearization

−ρCprdθdrdz
∂T

∂t
= hrdrdθdz +

∂hr

∂r
rdθdrdz +

∂hz

∂z
rdθdrdz →

ρCp
∂T

∂t
= −∂hr

∂r
− 1

r
hr −

∂hz

∂z

hr = −k
∂T

∂r
; hz = −k

∂T

∂z
→ ρCp

∂T

∂t
= k

∂2T

∂r2
+ k

1

r

∂T

∂r
+ k

∂2T

∂z2

4 Constitutive equations

Stresses must always satisfy the balance laws, which are considered to be laws of physics in
the non-quantum world, where we live our lives together with our materials and structures.
Balance laws must apply to each material, of which the deformation is studied. It is obvious,
however, that various materials will behave very differently, when subjected to the same
external loads. This behavior must be incorporated in the continuum mechanics theory and
is therefore modelled mathematically. The resulting equations are referred to as constitutive

equations. They can not fully be derived from physical principles, although the theory of
thermodynamics tells us a lot of how they must look like. The real mathematical formulation
of the material laws is however based on experimental observations of the deformation of the
material.

In later sections, the behavior of a wide range of materials is modelled and used in a
three-dimensional context. In this chapter, the more general aspects of constitutive equations
are discussed.

4.1 Equations and unknowns

Although it is obvious that material laws must be incorporated to describe the behavior of
different materials, they are also needed from a purely mathematical point of view. This has
to do with the number of unknown variables and the number of equations, from which they
must be solved. Obviously, the number of equations has to be the same as the number of
unknowns.

The local balance laws for mass, momentum and moment of momentum have to be sat-
isfied in every material point of the continuum body at every time during the deformation
process.

The mass balance law is a scalar equation. The balance of momentum or equation of
motion is a partial differential equation. It is a vector equation. The balance of moment of
momentum is a tensor equation.

The unknown variables, which appear in the balance laws, are the density ρ of the mate-
rial, the position vector ~x of the material point and the stress tensor σ. The continuity
equation can be used to express the density in the deformation tensor F , which is known,
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when the position ~x of the material point is known. So we can skip the mass balance from
our equation set and the density from the set of unknowns.

The moment of momentum equation can be used directly to state that there are only 6
unknown stress components instead of 9. So we loose three equations and three unknowns.
The number of unknowns is now 9 and the number of equations is 3, so 6 constitutive equa-
tions are required. These equations are relations between the stress components and the
components of the position vector.

mass ρJ = ρ0

momentum ~∇ · σc + ρ~q = ρ~̇v
moment of momentum σc = σ

density ρ
position vector ~x
Cauchy stress tensor σ

The number of unknowns is now 9 and the number of equations is 3, so 6 constitutive equa-
tions are required. These equations are relations between the stress components and the
components of the position vector.

σ = N (~x)

4.2 General constitutive equation

The most general constitutive equation states that the stress tensor in point ~x at (the cur-
rent) time t, is a function of the position of all material points at every previous time in
the deformation process. This implies that the complete deformation history of all points is
needed to calculate the current stress in each material point.

This constitutive equation is far to general to be useful. In the following it will be speci-
fied by incorporating assumptions about the material behavior. In practice these assumptions
must of course be based on experimental observations.



61

O

~x

~̂x
~x0

t0 t

τ

~̂x(τ)~̂x0

P

P

P

Fig. 4.43 : Deformation history of a continuum

σ(~x, t) = N{~̂x, τ | ∀ ~̂x ∈ V ; ∀ τ ≤ t}

4.2.1 Locality

A wide range of materials and deformation processes allow the assumption of locality. In that
case the stress in a point ~x is determined by the position of points in its direct neighborhood,
so points with position vector ~x+ d~x. This can be written in terms of the deformation tensor
F .

σ(~x, t) = N{~̂x, τ | ∀ ~̂x ∈ V ; ∀ τ ≤ t}
~̂x = ~x + d~x = ~x + F (~x) · d~x0







→ σ(~x, t) = N (~x,F (~x, τ), τ | ∀ τ ≤ t)

O

P

t

~x

~̂x

Fig. 4.44 : Deformation with local influence

4.2.2 Frame indifference
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The stress state in a material point will not change when the material body is translated
and/or rotated without (extra) deformation, i.e. when it moves as a rigid body. The vari-
ables in the constitutive equation may, however, change. The constitutive equation must be
formulated such that these changes do not affect the stress state in a material point.

A rigid body translation is described with a displacement vector, which is equal for all material
points. The stress is not allowed to change, so it is easily seen that the constitutive function
N cannot depend on the position ~x.

~n1

~n1

t
t∗

Fig. 4.45 : Rigid body translation of a continuum

σ(~x, t) = N (F (~x, τ), τ | ∀ τ ≤ t)

The symmetric Cauchy stress tensor can be written in spectral form. When the deformed body
is subjected to a rigid rotation, described by the rotation tensor Q, the principal stresses do
not change, but the principal directions do. This means that the Cauchy stress tensor changes
due to rigid rotation of the material.

The deformation tensor F will also change as a consequence of rigid rotation, which can
be easily seen from the polar decomposition.

The relation between σ∗ and F ∗ must be the same as that between σ and F , which
results in a requirement for the constitutive equation. (We skip the ~x-dependency of F .)

Q
t

~n
˜

~n
˜

t∗

Fig. 4.46 : Rigid body rotation of a continuum

~n∗

1 = Q ·~n1

~n∗

2 = Q ·~n2

~n∗

3 = Q ·~n3

σ = σ1~n1~n1 + σ2~n2~n2 + σ3~n3~n3

σ∗ = σ1~n
∗

1~n
∗

1 + σ2~n
∗

2~n
∗

2 + σ3~n
∗

3~n
∗

3

= σ1Q ·~n1~n1 ·Qc + σ2Q ·~n2~n2 · Qc + σ3Q ·~n3~n3 ·Qc
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= Q · [σ1~n1~n1 + σ2~n2~n2 + σ3~n3~n3] ·Q
c = Q ·σ · Qc

F = R ·U → F ∗ = R∗
·U = Q ·R ·U → F ∗ = Q ·F

objectivity requirement

Q(t) · N (F (τ) | ∀ τ ≤ t) ·Qc(t) = N (Q ·F (τ) | ∀ τ ≤ t) ∀ Q

σ = CE = C 1
2 (C − I) = C 1

2

(

F T
· F − I

)

σ∗ = Q · σ · QT

F ∗ = Q · F

E∗ = 1
2

(

F T
·QT

·Q ·F − I
)

= 1
2

(

F T
· F − I

)

= E

σ∗ = CE

NOT OBJECTIVE

σ = CA = C 1
2 (B − I) = C 1

2

(

F ·F T − I
)

σ∗ = Q ·σ · QT

F ∗ = Q ·F

A∗ = 1
2

(

Q · F ·F T
· QT − I

)

= 1
2Q ·

(

F ·F T − I
)

·QT = Q ·A ·Qc

σ∗ = CA∗

OBJECTIVE

σ = − pI + 2ηD

D = 1
2(L + Lc) with L = Ḟ ·F−1

σ∗ = Q ·σ ·QT

F ∗ = Q ·F ; F ∗
−1

= F−1
·Qc ; Ḟ

∗

= Q̇ ·F + Q · Ḟ

L∗ = (Q̇ ·F + Q · Ḟ ) · F−1
·Qc = Q̇ ·Qc + Q · Ḟ ·F−1

· Qc

D∗ = 1
2

[

Q̇ · Qc + Q · Ḟ ·F−1
·Qc + Q · Q̇

c
+ Q · (Ḟ ·F−1)c ·Qc

]

Q ·Qc = I → Q̇ ·Qc + Q · Q̇
c
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= Q ·D ·Qc

σ∗ = − pI + 2ηD∗

OBJECTIVE

4.3 Invariant stress tensor

For convenient constitutive modeling where stress (rate) is related to deformation (rate), we
need stress tensors which are invariant with rigid rotation. Also their time derivative must
answer this requirement.

A stress tensor S = A ·σ ·Ac can be defined, where A is to be specified later, but always
has to obey A∗ = A ·Qc. It follows that the stress tensor S is invariant for rigid rotations.

S = A · σ · Ac

S∗ = A∗
·σ∗

·A∗c = A∗
·Q ·σ ·Qc

·A∗c

define A∗ = A ·Qc

}

→

S∗ = A ·Qc
·Q ·σ ·Qc

·Q ·Ac = A ·σ ·Ac = S

S = invariant for rigid rotation

Also its time derivative Ṡ is inveriant.

Ṡ = Ȧ ·σ ·Ac + A · σ̇ ·Ac + A ·σ · Ȧ
c

Ṡ
∗

= Ȧ
∗

·σ∗
·A∗c + A∗

· σ̇∗
·A∗c + A∗

·σ∗
· Ȧ

∗c

= (Ȧ ·Qc + A · Q̇
c
) · Q ·σ ·Qc

·Q ·Ac +

A ·Qc
· (Q̇ ·σ ·Qc + Q · σ̇ ·Qc + Q ·σ · Q̇

c
) · Q ·Ac +

A ·Qc
·Q ·σ ·Qc

· (Q · Ȧ
c
+ Q̇ · Ac)

= Ȧ ·σ ·Ac + A · Q̇
c
·Q ·σ ·Ac + A ·Qc

· Q̇ ·σ ·Ac +

A · σ̇ ·Ac + A ·σ · Q̇
c
·Q ·Ac + A ·σ · Ȧ

c
+

A ·σ ·Qc
· Q̇ ·Ac

= Ȧ ·σ ·Ac + A · σ̇ ·Ac + A ·σ ·Ac +

A · Q̇
c
·Q ·σ ·Ac + A ·Qc

· Q̇ ·σ ·Ac +

A ·σ · Q̇
c
·Q ·Ac + A ·σ ·Qc

· Q̇ ·Ac

= Ṡ → Ṡ = invariant for rigid rotation
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The time derivative of S can also be expressed in the Cauchy stress tensor and its rate. As

a short notation the Cauchy stress rate
⊙

σ is introduced, which is a function of σ̇, A and Ȧ.
This tensor has the same transformation upon rigid body rotation than the Cauchy stress
tensor σ.

S = A ·σ ·Ac

Ṡ = Ȧ ·σ ·Ac + A · σ̇ ·Ac + A · σ · Ȧ
c

= A · (A−1
· Ȧ) · σ ·Ac + A · σ̇ ·Ac + A ·σ · (A−1

· Ȧ)c ·Ac

= A ·

{

(A−1
· Ȧ) · σ + σ · (A−1

· Ȧ)c + σ̇
}

· Ac = A ·
⊙

σ ·Ac

⊙

σ = σ̇ + (A−1
· Ȧ) ·σ + σ · (A−1

· Ȧ)c

⊙

σ
∗

= σ̇∗ + (A−1∗
· Ȧ

∗

) · σ∗ + σ∗
· (A−1∗

· Ȧ
∗

)c

A∗ = A ·Qc → A∗−1 = A−1∗ = Q ·A−1

Ȧ
∗

= Ȧ ·Qc + A · Q̇
c

A−1∗
· Ȧ

∗

= Q ·A−1
· Ȧ ·Qc + Q · Q̇

c

= σ̇∗ + Q ·A−1
· Ȧ ·Qc

·σ∗ + Q · Q̇
c
·σ∗ +

σ∗
·Q · (A−1

· Ȧ)c · Qc + σ∗
· Q̇ ·Qc

= Q̇ ·σ ·Qc + Q · σ̇ ·Qc + Q ·σ · Q̇
c
+

Q · A−1
· Ȧ · σ · Qc + Q · Q̇

c
·Qc

·σ ·Qc +

Q · σ · (A−1
· Ȧ)c ·Qc + Q ·σ ·Qc

· Q̇ · Qc

= Q · [σ̇ + (A−1
· Ȧ) · σ + σ · (A−1

· Ȧ)c] ·Qc

= Q ·
⊙

σ ·Qc → ⊙

σ = objective

4.4 Objective rates and associated tensors

The tensor A is now specified, which results in some alternative invariant stress tensors.
With each tensor a so-called objective rate of the Cauchy stress tensor is associated. choosing
A ∈ {F−1,Q−1,F c,Rc} results in the Truesdell, Jaumann, Cotter-Rivlin and Dienes tensor
and rate.

general tensor S = σO = A ·σ · Ac

Ṡ = σ̇O = A ·
⊙

σO ·Ac

general rate
⊙

σO = σ̇ + (A−1
· Ȧ) · σ + σ · (A−1

· Ȧ)c

Truesdell tensor σT = F−1
·σ ·F−c

σ̇T = F−1
·

⊙

σT ·F−c

Truesdell rate
⊙

σT =
▽

σ = σ̇ − L ·σ − σ ·Lc
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Jaumann tensor σJ = Q−1
·σ ·Q−c with Q̇ = Ω ·Q

σ̇J = Q−1
·

⊙

σJ ·Q−c

Jaumann rate
⊙

σJ =
◦
σ = σ̇ − Ω · σ − σ · Ωc

Cotter-Rivlin tensor σC = F c
· σ ·F

σ̇C = F c
·

⊙

σC ·F

Cotter-Rivlin rate
⊙

σC =
△
σ = σ̇ + Lc

·σ + σ ·L

Dienes tensor σD = Rc
·σ ·R with F = R ·U

σ̇D = Rc
·

⊙

σD ·R

Dienes rate
⊙

σD =
⋄
σ = σ̇ − (Ṙ ·Rc) · σ − σ · (Ṙ ·Rc)c

5 Linear elastic material

For linear elastic material behavior the stress tensor σ is related to the linear strain tensor ε

by the constant fourth-order stiffness tensor 4C :

σ = 4C : ε

The relevant components of σ and ε w.r.t. an orthonormal vector basis {~e1, ~e2, ~e3} are stored
in columns σ

˜̃
and ε

˜̃
. Note that we use double ”waves” to indicate that the columns contain

components of a second-order tensor.

σ
˜̃

T = [σ11 σ22 σ33 σ12 σ21 σ23 σ32 σ31 σ13]

ε
˜̃
T = [ε11 ε22 ε33 ε12 ε21 ε23 ε32 ε31 ε13]

The relation between these columns is given by the 9× 9 matrix C, which stores the compo-
nents of 4C and is referred to as the material stiffness matrix. Note again the use of double
underscore to indicate that the matrix contains components of a fourth-order tensor.

tensor notation σ = 4C : ε

index notation σij = Cijklεlk ; i, j, k, l ∈ {1, 2, 3}
matrix notation σ

˜̃
= C ε

˜̃




























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The stored energy per unit of volume is :

W = 1
2 ε : 4C : ε =

[

1
2 ε : 4C : ε

]c
= 1

2 ε : 4C
c
: ε

which implies that 4C is total-symmetric : 4C = 4C
c

or equivalently C = CT .
As the stress tensor is symmetric, σ = σc, the tensor 4C must be left-symmetric :

4C = 4C
lc

or equivalently C = CLT . As also the strain tensor is symmetric, ε = εc, the
constitutive relation can be written with a 6 × 6 stiffness matrix.
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specific energy W = 1
2ε
˜̃
T C ε

˜̃
→ symmetry C = CT

Symmetric stresses
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Symmetric strains
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Symmetric material parameters

The components of C must be determined experimentally, by prescribing strains and measur-
ing stresses and vice versa. It is clear that only the summation of the components in the 4th,
5th and 6th columns can be determined and for that reason, it is assumed that the stiffness
tensor is right-symmetric : 4C = 4C

rc
or equivalently C = CRT .
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Cijkl = Cijlk
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Shear strain

To restore the symmetry of the stiffness matrix, the factor 2 in the last three columns is
swapped to the column with the strain components. The shear components are replaced
by the shear strains : 2εij = γij . This leads to a symmetric stiffness matrix C with 21
independent components.
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5.1 Material symmetry

Almost all materials have some material symmetry, originating from the micro structure,
which implies that the number of independent material parameters is reduced. The following
names refer to increasing material symmetry and thus to decreasing number of material
parameters :

To reduce the number of elasticity parameters, we assume a coordinate system attached
to the symmetry axes or planes in the material.

monoclinic → orthotropic → quadratic → transversal isotropic → cubic → isotropic
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5.1.1 Triclinic

In a triclinic material there is no symmetry. Therefore there are 21 material parameters to
be determined from independent experimental test setups. This is practically not feasible.
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21 material parameters

5.1.2 Monoclinic

In each material point of a monoclinic material there is one symmetry plane, which we take
here to be the 12-plane. Strain components w.r.t. two vector bases ~e

˜
= [~e1 ~e2 ~e3]

T and
~e
˜
∗ = [~e1 ~e2 − ~e3]

T must result in the same stresses. It can be proved that all components of
the stiffness matrix, with an odd total of the index 3, must be zero. This implies :

C2311 = C2322 = C2333 = C2321 = C3111 = C3122 = C3133 = C3121 = 0

A monoclinic material is characterized by 13 material parameters. In the figure the directions
with equal properties are indicated with an equal number of lines.

Monoclinic symmetry is found in e.g. gypsum (CaSO42H2O).
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Fig. 5.47 : One symmetry plane for

monoclinic material symmetry
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13 material parameters
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5.1.3 Orthotropic

In a point of an orthotropic material there are three symmetry planes which are perpendicular.
We choose them here to coincide with the Cartesian coordinate planes. In addition to the
implications for monoclinic symmetry, we can add the requirements

C1112 = C2212 = C3312 = C3123 = 0

An orthotropic material is characterized by 9 material parameters. In the stiffness matrix,
they are now indicated as A,B,C,Q,R, S,K,L and M .

Orthotropic symmetry is found in orthorhombic crystals (e.g. cementite, Fe3C) and in
composites with fibers in three perpendicular directions.
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Fig. 5.48 : Three symmetry planes

for orthotropic material symmetry
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A Q R 0 0 0
Q B S 0 0 0
R S C 0 0 0
0 0 0 K 0 0
0 0 0 0 L 0
0 0 0 0 0 M
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9 material parameters

5.1.4 Quadratic

If in an orthotropic material the properties in two of the three symmetry planes are the same,
the material is referred to as quadratic. Here we assume the behavior to be identical in the
~e1- and the ~e2-directions, however there is no isotropy in the 12-plane. This implies : A = B,
S = R and M = L. Only 6 material parameters are needed to describe the mechanical
material behavior.

Quadratic symmetry is found in tetragonal crystals e.g. TiO2 and white tin Snβ.
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Fig. 5.49 : Quadratic material
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0 0 0 0 0 L
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6 material parameters

5.1.5 Transversal isotropic

When the material behavior in the 12-plane is isotropic, an additional relation between pa-
rameters can be deduced. To do this, we consider a pure shear deformation in the 12-plane,
where a shear stress τ leads to a shear γ. The principal stress and strain directions coincide
due to the isotropic behavior in the plane. In the principal directions the relation between
principal stresses and strains follow from the material stiffness matrix.

σ =

[

σ11 σ12

σ21 σ22

]

=

[

0 τ
τ 0

]

→ det(σ − σI) = 0 →
{

σ1 = τ
σ2 = −τ

ε =

[

ε11 ε12

ε21 ε22

]

=

[

0 1
2γ

1
2γ 0

]

→ det(ε − εI) = 0 →
{

ε1 = 1
2γ

ε2 = −1
2γ

[

σ1

σ2

]

=

[

A Q
Q A

] [

ε1

ε2

]

→ σ1 = Aε1 + Qε2 = τ = Kγ
σ2 = Qε1 + Aε2 =−τ =−Kγ

→

(A − Q)(ε1 − ε2) = 2Kγ

ε1 = 1
2γ ; ε1 = −1

2γ







→ K = 1
2 (A − Q)

Examples of transversal isotropy are found in hexagonal crystals (CHP, Zn, Mg, Ti) and
honeycomb composites. The material behavior of these materials can be described with 5
material parameters.
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Fig. 5.50 : Transversal material
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K = 1
2 (A − Q)

5 material parameters

5.1.6 Cubic

In the three perpendicular material directions the material properties are the same. In the
symmetry planes there is no isotropic behavior. Only 3 material parameters remain.

Examples of cubic symmetry are found in BCC and FCC crystals (e.g. in Ag, Cu, Au,
Fe, NaCl).
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3

Fig. 5.51 : Cubic material
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L 6= 1
2(A − Q)

3 material parameters

5.1.7 Isotropic

In all three directions the properties are the same and in each plane the properties are
isotropic. Only 2 material parameters remain.

Isotropic material behavior is found for materials having a microstructure, which is suffi-
ciently randomly oriented and distributed on a very small scale. This applies to metals with a
randomly oriented polycrystalline structure, ceramics with a random granular structure and
composites with random fiber/particle orientation.
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Fig. 5.52 : Isotropic material
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L = 1
2(A − Q)

2 material parameters

Engineering parameters

In engineering practice the linear elastic material behavior is characterized by Young’s moduli,
shear moduli and Poisson ratios. They have to be measured in tensile and shear experiments.
In this section these parameters are introduced for an isotropic material.

For orthotropic and transversal isotropic material, the stiffness and compliance matrices,
expressed in engineering parameters, can be found in appendix A.

To express the material constants A, Q and L in the parameters E, ν and G, two simple
tests are considered : a tensile test along the 1-axis and a shear test in the 13-plane.

In a tensile test the contraction strain εd and the axial stress σ are related to the axial strain
ε. The expressions for A, Q and L result after some simple mathematics.

















σ11

σ22

σ33

σ12

σ23

σ31

















=

















A Q Q 0 0 0
Q A Q 0 0 0
Q Q A 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 L

































ε11

ε22

ε33

γ12

γ23

γ31

















with L = 1
2(A − Q)

ε
˜̃
T =

[

ε εd εd 0 0 0
]

; σ
˜̃

T =
[

σ 0 0 0 0 0
]

σ = Aε + 2Qεd

0 = Qε + (A + Q)εd → εd = − Q

A + Q
ε







→ σ =
A2 + AQ − 2Q2

A + Q
ε

εd = −νε ; σ = Eε















→

A =
(1 − ν)E

(1 + ν)(1 − 2ν)
Q =

νE

(1 + ν)(1 − 2ν)
L =

E

2(1 + ν)
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When we analyze a shear test, the relation between the shear strain γ and the shear stress
τ is given by the shear modulus G. For isotropic material G is a function of E and ν. For
non-isotropic materials, the shear moduli are independent parameters.
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with L = 1
2(A − Q)

ε
˜̃
T =

[

0 0 0 0 0 γ
]

; σ
˜̃

T =
[

0 0 0 0 0 τ
]

τ = Lγ =
E

2(1 + ν)
γ = Gγ

For an isotropic material, a hydrostatic stress will only result in volume change. The relation
between the volume strain and the hydrostatic stress is given by the bulk modulus K, which
is a function of E and ν.
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with L = 1
2(A − Q)

ε
˜̃
T =

[

ε11 ε22 ε33 0 0 0
]

J − 1 ≈ ε11 + ε22 + ε33 =
1 − 2ν

E
(σ11 + σ22 + σ33)

=
3(1 − 2ν)

E
1
3 (σ11 + σ22 + σ33) =

1

K
1
3tr(σ)

The compliance and stiffness matrices for isotropic material can now be fully written in terms
of the Young’s modulus ad the Poisson’s ratio.
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
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with α =
E

(1 + ν)(1 − 2ν)

Besides Young’s modulus, shear modulus, bulk modulus and Poisson ratio in some formula-
tions the so-called Lamé coefficients λ and µ are used, where µ = G and λ is a function of E
and ν. The next tables list the relations between all these parameters.

E, ν λ,G K,G E,G E,K

E E (2G+3λ)G
λ+G

9KG
3K+G

E E

ν ν λ
2(λ+G)

3K−2G
2(3K+G)

E−2G
2G

3K−E
6K

G E
2(1+ν) G G G 3KE

9K−E

K E
3(1−2ν)

3λ+2G
3 K EG

3(3G−E) K

λ Eν
(1+ν)(1−2ν) λ 3K−2G

3
G(E−2G)

3G−E
3K(3K−E)

9K−E

E,λ G, ν λ, ν λK K, ν

E E 2G(1 + ν) λ(1+ν)(1−2ν)
ν

9K(K−λ)
3K−λ

3K(1 − 2ν)

ν
−E−λ+

√
(E+λ)2+8λ2

4λ
ν ν λ

3K−λ
ν

G
−3λ+E+

√
(3λ−E)2+8λE

4 G λ(1−2ν)
2ν

3(K−λ)
2

3K(1−2ν)
2(1+ν)

K
E−3λ+

√
(E−3λ)2−12λE

6
2G(1+ν)
3(1−2ν)

λ(1+ν)
3ν

K K

λ λ 2Gν
1−2ν

λ λ 3Kν
1+ν

5.2 Isotropic material tensors

Isotropic linear elastic material behavior is characterized by only two independent material
constants, for which we can choose Young’s modulus E and Poisson’s ratio ν. The isotropic
material law can be written in tensorial form, where σ is related to ε with a fourth-order
material stiffness tensor 4C.
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In column/matrix notation the strain components are related to the stress components by a
6 × 6 compliance matrix. Inversion leads to the 6 × 6 stiffness matrix, which relates strain
components to stress components. It should be noted that shear strains are denoted as εij

and not as γij , as was done before.
The stiffness matrix is written as the sum of two matrices, which can then be written in

tensorial form.
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with α =
E

(1 + ν)(1 − 2ν)

The stiffness matrix is rewritten as the sum of two matrices, the second of which is a unit
matrix. Also the first one can be reduced to a matrix with ones and zeros only.
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Isotropic stiffness tensor

The first matrix is the matrix representation of the fourth-order tensor II. The second matrix
is the representation of the symmetric fourth-order tensor 4I

s
. The resulting fourth-order

material stiffness tensor 4C contains two material constants c0 and c1. It is observed that
c0 = λ and c1 = 2µ, where λ and µ are the Lamé coefficients introduced earlier.

σ =

[

Eν

(1 + ν)(1 − 2ν)

]

I tr(ε) +

[

E

(1 + ν)

]

ε

= Q tr(ε) I + 2Lε

= c0 tr(ε) I + c1 ε

=
[

c0II + c1
4I

s]
: ε with 4I

s
= 1

2( 4I + 4I
rc

)

= 4C : ε

Stiffness and compliance tensor

The strain and stress tensors can both be written as the sum of an hydrostatic - (.)h - and a
deviatoric - (.)d - part. Doing so, the stress-strain relation can be easily inverted.
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σ = 4C : ε

=
[

c0II + c1
4I

s]
: ε

with 4I
s

= 1
2

(

4I + 4I
rc)

= c0tr(ε)I + c1ε

= c0tr(ε)I + c1

{

εd + 1
3tr(ε)I

}

= (c0 + 1
3c1)tr(ε)I + c1ε

d

= (3c0 + c1)
1
3 tr(ε)I + c1ε

d

= (3c0 + c1)ε
h + c1ε

d

= σh + σd

ε = εh + εd

=
1

3c0 + c1
σh +

1

c1
σd

=
1

3c0 + c1

1
3 tr(σ)I +

1

c1

{

σ − 1
3tr(σ)I

}

= − c0

(3c0 + c1)c1
tr(σ)I +

1

c1
σ

=

[

− c0

(3c0 + c1)c1
II +

1

c1

4I
s
]

: σ

=
[

γ0II + γ1
4I

s]
: σ

= 4S : σ

c0 =
νE

(1 + ν)(1 − 2ν)
= Q ; c1 =

E

1 + ν
= 2L

γ0 = − c0

(3c0 + c1)c1
= − ν

E
= q ; γ1 =

1

c1
=

1 + ν

E
= 1

2 l

The tensors can be written in components with respect to an orthonormal vector basis. This
results in the relation between the stress and strain components, given below in index notation,
where summation over equal indices is required (Einstein’s convention).

σ =
[

c0II + c1
4I

s]
: ε

σij =
[

c0δijδkl + c1
1
2 (δilδjk + δikδjl)

]

εlk

= c0δijεkk + c1εij

= c1

(

εij +
c0

c1
δijεkk

)

=
E

1 + ν

(

εij +
ν

1 − 2ν
δijεkk

)

ε =

[

− c0

(3c0 + c1)c1
II +

1

c1

4I
s
]

: σ

εij =

[

− c0

(3c0 + c1)c1
δijδkl+

1

c1

1
2 (δilδjk + δikδjl)

]

σlk

= − c0

(3c0 + c1)c1
δijσkk +

1

c1
σij

=
1

c1

(

σij −
c0

3c0 + c1
δijσkk

)

=
1 + ν

E

(

σij −
ν

1 + ν
δijσkk

)

Specific elastic energy

The elastically stored energy per unit of volume (= the specific elastic energy) can be written
as the sum of an hydrostatic and a deviatoric part. The hydrostatic part represents the
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specific energy associated with volume change. The deviatoric part indicates the specific
energy needed for shape change.

W = 1
2σ : ε = 1

2σ : 4S : σ = 1
2 (σh + σd) : 4S : (σh + σd)

= 1
2 (σh + σd) :

(

γ0II + γ1
4I

s)
: (σh + σd)

γ0I
[

I : σh
]

= γ0I
[

I : I 1
3tr(σ)

]

= γ0I
[
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]

= 3γ0σ
h

γ0I
[

I : σd
]

= γ0 I
[
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]

= γ0 I
[

0
]

= 0

= 1
2 (σh + σd) : (3γ0σ

h + γ1σ
h + γ1σ

d)
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3tr(σ)I : 1

3tr(σ)I = 1
9tr2(σ)(3) = 1

3tr2(σ)

σh : σd = 1
3tr(σ)I : [σ − 1

3tr(σ)I] = 1
3tr2(σ) − 1

3 tr2(σ) = 0

=
[

1
2 (γ0 + 1

3 γ1)
]

tr2(σ) +
[

1
2γ1

]

σd : σd

=

[

1
2

1 − 2ν

3E

]

tr2(σ) +

[

1
2

1 + ν

E

]

σd : σd =
1

18K
tr2(σ) +

1

4G
σd : σd

= W h + W d

5.3 Thermo-elasticity

A temperature change ∆T of an unrestrained material invokes deformation. The total strain
results from both mechanical and thermal effects and when deformations are small the total
strain ε can be written as the sum of mechanical strains εm and thermal strains εT . The
thermal strains are related to the temperature change ∆T by the coefficient of thermal ex-
pansion tensor A.

The stresses in terms of strains are derived by inversion of the compliance matrix S. For
thermally isotropic materials only the linear coefficient of thermal expansion α is relevant.

Anisotropic

ε = εm + εT = 4S : σ + A∆T → ε
˜̃

= ε
˜̃m

+ ε
˜̃T

= S σ
˜̃

+ A∆T

σ = 4C : (ε − A∆T ) → σ
˜̃

= C
(

ε
˜̃
− A∆T

)

Isotropic

ε = 4S : σ + α ∆TI → ε
˜̃

= S σ
˜̃

+ α ∆TI
˜̃

σ = 4C : (ε − α∆TI) → σ
˜̃

= C(ε
˜̃
− α ∆T I

˜̃
)

For orthotropic material, this can be written in full matrix notation.
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5.4 Planar deformation

In many cases the state of strain or stress is planar. Both for plane strain and for plane
stress, only strains and stresses in a plane are related by the material law. Here we assume
that this plane is the 12-plane. For plane strain we than have ε33 = γ23 = γ31 = 0, and for
plane stress σ33 = σ23 = σ31 = 0. The material law for these planar situations can be derived
from the general three-dimensional stress-strain relation, either from the stiffness matrix C
or from the compliance matrix S. Here the compliance and stiffness matrices are derived
for the general orthotropic material. First the isothermal case is considered, subsequently
planar relations are derived for thermo-elasticity. For cases with more material symmetry,
the planar stress-strain relations can be simplified accordingly. The corresponding stiffness
and compliance matrices can be found in appendix A, where they are specified in engineering
constants.

5.4.1 Plane strain

For a plane strain state with ε33 = γ23 = γ31 = 0, the stress σ33 can be expressed in the
planar strains ε11 and ε22. The material stiffness matrix C

ε
can be extracted directly from

C. The material compliance matrix S
ε

has to be derived by inversion.

ε33 = γ23 = γ31 = 0 → σ33 = Rε11 + Sε22

σ
˜

=




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
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
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
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ε
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


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 =
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AB − Q2






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B −Q 0
−Q A 0

0 0
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K












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σ22

σ12



 =


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aε qε 0
qε bε 0
0 0 k









σ11

σ22

σ12



 = S
ε
σ
˜
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We can derive by substitution :

σ33 =
1

AB2 − Q2
[(BR − QS)σ11 + (AS − QR)σ22]

Because the components of the three-dimensional compliance matrix S are most conveniently
expressed in Young’s moduli, Poisson’s ratios and shear moduli, this matrix is a good starting
point to derive the planar matrices for specific cases. The plane strain stiffness matrix C

ε
must then be determined by inversion.

ε33 = 0 = rσ11 + sσ22 + cσ33 → σ33 = −r

c
σ11 −

s

c
σ22

ε
˜

=
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
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
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



σ11

σ22

σ12



 −





r
s
0





[ r

c

s

c
0

]





σ11

σ22

σ12





=
1

c





ac − r2 qc − rs 0
qc − sr bc − s2 0

0 0 kc









σ11

σ22

σ12



 =





aε qε 0
qε bε 0
0 0 k









σ11

σ22

σ12



 = S
ε
σ
˜

σ
˜

=





σ11

σ22

σ12



 =





aε qε 0
qε bε 0
0 0 k





−1 



ε11

ε22

γ12



 =
1
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
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ε22
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



with ∆s = abc − as2 − br2 − cq2 + 2qrs

=





Aε Qε 0
Qε Bε 0
0 0 K









ε11

ε22

ε12



 = C
ε
σ
˜

We can now derive by substitution :

σ33 = − 1

∆s
[(br − qs)ε11 + (as − qr)ε22]

5.4.2 Plane stress

For the plane stress state, with σ33 = σ23 = σ31 = 0, the two-dimensional material law can
be easily derived from the three-dimensional compliance matrix S

ε
. The strain ε33 can be

directly expressed in σ11 and σ22. The material stiffness matrix has to be derived by inversion.

σ33 = σ23 = σ31 = 0 → ε33 = rσ11 + sσ22
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We can derive by substitution :

ε33 =
1

ab − q2
[(br − qs)ε11 + (as − qr)ε22]

The same relations can be derived from the three-dimensional stiffness matrix C.

σ33 = 0 = Rε11 + Sε22 + Cε33 → ε33 = −R

C
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5.4.3 Plane strain thermo-elastic

For thermo-elastic material behavior, the plane strain relations can be derived straightfor-
wardly.

σ33 = Rε11 + Sε22 − α(R + S + C)∆T (from C)

= −r

c
σ11 −

s

c
σ22 −

α

c
∆T (from S)
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5.4.4 Plane stress thermo-elastic

For plane stress the thermo-elastic stress-strain relations can be derived again.

ε33 = rσ11 + sσ22 + α∆T (from S)
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5.4.5 Plane strain/stress

In general we can write the stiffness and compliance matrix for planar deformation as a 3 × 3
matrix with components, which are specified for plane strain (p = ε) or plane stress (p = σ).
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=
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6 Elastic limit criteria

Loading of a material body causes deformation of the structure and, consequently, strains
and stresses in the material. When either strains or stresses (or both combined) become too
large, the material will be damaged, which means that irreversible microstructural changes
will result. The structural and/or functional requirements of the structure or product will be
hampered, which is referred to as failure.

Their are several failure modes, listed in the table below, each of them associated with
a failure mechanism. In the following we will only consider plastic yielding. When the stress
state exceeds the yield limit, the material behavior will not be elastic any longer. Irreversible
microstructural changes (crystallographic slip in metals) will cause permanent (= plastic)
deformation.

failure mode mechanism

plastic yielding crystallographic slip (metals)

brittle fracture (sudden) breakage of bonds

progressive damage micro-cracks → growth → coalescence

fatigue damage/fracture under cyclic loading

dynamic failure vibration → resonance

thermal failure creep / melting

elastic instabilities buckling → plastic deformation

6.1 Yield function

In a one-dimensional stress state (tensile test), yielding will occur when the absolute value
of the stress σ reaches the initial yield stress σy0. This can be tested with a yield criterion,
where a yield function f is used. When f < 0 the material behaves elastically and when
f = 0 yielding occurs. Values f > 0 cannot be reached.

f(σ) = σ2 − σ2
y0 = 0 → g(σ) = σ2 = σ2

y0 = gt = limit in tensile test
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εy0 ε = εl

−σy0

σy0

σ = σn

Fig. 6.53 : Tensile curve with initial yield stress

In a three-dimensional stress space, the yield criterion represents a yield surface. For elastic
behavior (f < 0) the stress state is located inside the yield surface and for f = 0, the
stress state is on the yield surface. Because f > 0 cannot be realized, stress states outside
the yield surface can not exist. For isotropic material behavior, the yield function can be
expressed in the principal stresses σ1, σ2 and σ3. It can be visualized as a yield surface in the
three-dimensional principal stress space.

f(σ) = 0 → g(σ) = gt : yield surface in 6D stress space

f(σ1, σ2, σ3) = 0 → g(σ1, σ2, σ3) = gt : yield surface in 3D principal stress space

σ1

σ2

σ3

Fig. 6.54 : Yield surface in three-dimensional principal stress space

6.2 Principal stress space

The three-dimensional stress space is associated with a material point and has three axes, one
for each principal stress value in that point. In the origin of the three-dimensional principal
stress space, where σ1 = σ2 = σ3 = 0, three orthonormal vectors {~e1, ~e2, ~e3} constitute a
vector base. The stress state in the material point is characterized by the principal stresses
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and thus by a point in stress space with ”coordinates” σ1, σ2 and σ3. This point can also be
identified with a vector ~σ, having components σ1, σ2 and σ3 with respect to the vector base
{~e1, ~e2, ~e3}.

The hydrostatic axis, where σ1 = σ2 = σ3 can be identified with a unit vector ~ep.
Perpendicular to ~ep in the ~e1~ep-plane a unit vector ~eq can be defined. Subsequently the unit
vector ~er is defined perpendicular to the ~ep~eq-plane.

The vectors ~eq and ~er span the so-called Π-plane perpendicular to the hydrostatic axis.
Vectors ~ep, ~eq and ~er constitute a orthonormal vector base. A random unit vector ~et(φ) in
the Π-plane can be expressed in ~eq and ~er.

~σ

~ep

~e1

~e2

~e3
~ep

~er

~eq

~et(φ)

φ

Fig. 6.55 : Principal stress space

hydrostatic axis ~ep = 1
3

√
3(~e1 + ~e2 + ~e3) with ||~ep|| = 1

plane ⊥ hydrostatic axis

~e ∗

q = ~e1 − (~ep ·~e1)~ep = ~e1 − 1
3(~e1 + ~e2 + ~e3) = 1

3 (2~e1 − ~e2 − ~e3)

~eq = 1
6

√
6(2~e1 − ~e2 − ~e3)

~er = ~ep ∗ ~eq = 1
3

√
3(~e1 + ~e2 + ~e3) ∗ 1

6

√
6(2~e1 − ~e2 − ~e3) = 1

2

√
2(~e2 − ~e3)

vector in Π-plane ~et(φ) = cos(φ)~eq − sin(φ)~er

A stress state can be represented by a vector in the principal stress space. This vector can be
written as the sum of a vector along the hydrostatic axis and a vector in the Π-plane. These
vectors are referred to as the hydrostatic and the deviatoric part of the stress vector.

~σ = σ1~e1 + σ2~e2 + σ3~e3 = ~σh + ~σd

~σh = (~σ ·~ep)~ep = σh~ep = 1
3

√
3(σ1 + σ2 + σ3)~ep =

√
3σm~ep

σh = 1
3

√
3(σ1 + σ2 + σ3)

~σd = ~σ − (~σ ·~ep)~ep

= σ1~e1 + σ2~e2 + σ3~e3 − 1
3

√
3(σ1 + σ2 + σ3)

1
3

√
3(~e1 + ~e2 + ~e3)
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= σ1~e1 + σ2~e2 + σ3~e3 − 1
3 (σ1~e1 + σ2~e1 + σ3~e1 + σ1~e2 + σ2~e2 + σ3~e2 + σ1~e3 + σ2~e3 + σ3~e3)

= 1
3{(2σ1 − σ2 − σ3)~e1 + (−σ1 + 2σ2 − σ3)~e2 + (−σ1 − σ2 + 2σ3)~e3}

σd = ||~σd|| =
√

~σd ·~σd

= 1
3

√

(2σ1 − σ2 − σ3)2 + (−σ1 + 2σ2 − σ3)2 + (−σ1 − σ2 + 2σ3)2

=
√

2
3(σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ2σ3 − σ3σ1)

=
√

σd : σd

Because the stress vector in the principal stress space can also be written as the sum of three
vectors along the base vectors ~e1, ~e2 and ~e3, the principal stresses can be expressed in σh and
σd.

~σ = ~σh + ~σd = σh~ep + σd~et(φ)

= σh~ep + σd{cos(φ)~eq − sin(φ)~er}
= σh 1

3

√
3(~e1 + ~e2 + ~e3) + σd{cos(φ)1

6

√
6(2~e1 − ~e2 − ~e3) − sin(φ)1

2

√
2(~e2 − ~e3)}

= {1
3

√
3 σh + 1

3

√
6 σd cos(φ)}~e1 +

{1
3

√
3 σh − 1

6

√
6 σd cos(φ) − 1

2

√
2 σd sin(φ)}~e2 +

{1
3

√
3 σh − 1

6

√
6 σd cos(φ) + 1

2

√
2 σd sin(φ)}~e3

= σ1~e1 + σ2~e2 + σ3~e3

6.3 Yield criteria

In the following sections, various yield criteria are presented. Each of them starts from a
hypothesis, stating when the material will yield. Such a hypothesis is based on experimental
observation and is valid for a specific (class of) material(s). The yield criteria can be visualized
in several stress spaces:

• the two-dimensional (σ1, σ2)-space for plane stress states with σ3 = 0,

• the three-dimensional (σ1, σ2, σ3)-space,

• the Π-plane and

• the στ -plane, where Mohr’s circles are used.

6.3.1 Maximum stress/strain

The maximum stress/strain criterion states that

yielding occurs when one of the stress/strain components exceeds a limit value.

This criterion is used for orthotropic materials.

σij = σmax | εij = εmax ; {i, j} = {1, 2, 3} (orthotropic materials)
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6.3.2 Rankine

The maximum principal stress (or Rankine) criterion states that

yielding occurs when the maximum principal stress reaches a limit value.

The Rankine criterion is used for brittle materials like cast iron. At failure these materials
show cleavage fracture.

|σmax| = max(|σi| ; i = 1, 2, 3) = σmax,t = σy0(brittle materials; cast iron)

The figure shows the yield surface in the principal stress space for a plane stress state with
σ3 = 0.

In the three-dimensional stress space the yield surface is a cube with side-length 2σy0.
In the (σ, τ)-space the Rankine criterion is visualized by to limits, which can not be

exceeded by the absolute maximum of the principal stress.

σ1

σ2

Fig. 6.56 : Rankine yield surface in

two-dimensional principal stress space

σ1

σ2

σ3

Fig. 6.57 : Rankine yield surface in

three-dimensional principal stress space

σy0−σy0

τ

σ
0

Fig. 6.58 : Rankin yield limits in (σ, τ)-space

6.3.3 De Saint Venant

The maximum principal strain (or De Saint Venant) criterion states that

yielding occurs when the maximum principal strain reaches a limit value.
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From a tensile experiment this limit value appears to be the ratio of uni-axial yield stress and
Young’s modulus.

For σ1 > σ2 > σ3, the maximum principal strain can be calculated from Hooke’s law
and its limit value can be expressed in the initial yield value σyo and Young’s modulus E.

ε1 =
1

E
σ1 −

ν

E
σ2 −

ν

E
σ3 =

σy0

E
→ σ1 − νσ2 − νσ3 = σy0

For other sequences of the principal stresses, relations are similar and can be used to construct
the yield curve/surface in 2D/3D principal stress space.

εmax = max(|εi| ; i = 1, 2, 3) = εmaxt
= εy0 =

σy0

E

σ2

σ1

σ1 − νσ2 = σy0

σ2 − νσ1 = σy0

σy0−σy0

Fig. 6.59 : Saint-Venant’s yield curve in two-dimensional principal stress space

6.3.4 Tresca

The Tresca criterion (Tresca, Coulomb, Mohr, Guest (1864)) states that

yielding occurs when the maximum shear stress reaches a limit value.

In a tensile test the limit value for the shear stress appears to be half the uni-axial yield stress.

τmax = 1
2(σmax − σmin) = τmax,t = 1

2σy0 → σ̄TR = σmax − σmin = σy0

Using Mohr’s circles, it is easily seen how the maximum shear stress can be expressed in the
maximum and minimum principal stresses.

For the plane stress case (σ3 = 0) the yield curve in the σ1σ2-plane can be constructed
using Mohr’s circles. When both principal stresses are positive numbers, the yielding occurs
when the largest reaches the one-dimensional yield stress σy0. When σ1 is positive (= tensile
stress), compression in the perpendicular direction, so a negative σ2, implies that σ1 must
decrease to remain at the yield limit. Using Mohr’s circles, this can easily be observed.
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σ2

σ1

σ2 = σy0

σ1 = 0

σ2 = 0

σ1 = σy0

σ1 = 0

σ2 = −σy0

σ2 σ1

σ2

σ1 = σy0

Fig. 6.60 : Tresca yield curve in two-dimensional principal stress space

Adding an extra hydrostatic stress state implies a translation in the three-dimensional prin-
cipal stress space

{σ1, σ2, σ3} → {σ1 + c, σ2 + c, σ2 + c}

i.e. a translation parallel to the hydrostatic axis where σ1 = σ2 = σ3. This will never result in
yielding or more plastic deformation, so the yield surface is a cylinder with its axis coinciding
with (or parallel to) the hydrostatic axis.

In the Π-plane, the Tresca criterion is a regular 6-sided polygonal.

σ1 = σ2 = σ3

30o

σ2σ1

σ3

σ1

σ2

σ3

σ1 = σ2 = σ3
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Fig. 6.61 : Tresca yield surface in three-dimensional principal stress space and the Π-plane

In the στ -plane the Tresca yield criterion can be visualized with Mohr’s circles.

σmax

τmax

σ
σmin

τ

Fig. 6.62 : Mohr’s circles and Tresca yield limits in (σ, τ)-space

6.3.5 Von Mises

According to the Von Mises elastic limit criterion (Von Mises, Hubert, Hencky (1918)),

yielding occurs when the specific shape deformation elastic energy reaches a critical
value.

The specific shape deformation energy is also referred to as distortional energy or deviatoric

energy or shear strain energy. It can be derived by splitting up the total specific elastic
energy W into a hydrostatic part W h and a deviatoric part W d. The deviatoric W d can be
expressed in σd and the hydrostatic W h can be expressed in the mean stress σm = 1

3tr(σ).
The deviatoric part can be expressed in the second invariant J2 of the deviatoric stress tensor
and in the principal stresses.

For the tensile test the shape deformation energy W d
t can be expressed in the yield

stress σy0. The Von Mises yield criterion W d = W d
t can than be written as σ̄V M = σy0, where

σ̄V M is the equivalent or effective Von Mises stress, a function of all principal stresses. It is
sometimes replaced by the octahedral shear stress τoct = 1

3

√
2σ̄V M .

W d = W d
t

W d =
1

4G
σd : σd =

1

4G

{

σ : σ − 1
3tr2(σ)

}

(

= − 1

2G
J2(σ

d)

)

=
1

4G
(σ2

1 + σ2
2 + σ2

3) −
1

12G
(σ1 + σ2 + σ3)

2

=
1

4G
1
3

{

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2
}

W d
t =

1

4G
1
3

{

(σ − 0)2 + (0 − 0)2 + (0 − σ)2
}

=
1

4G
1
32σ2 =

1

4G
1
3 2σ2

y0
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σ̄V M =
√

1
2 {(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2} = σy0

The Von Mises yield criterion can be expressed in Cartesian stress components.

σ̄2
V M = 3

2σd : σd = 3J2

= 3
2 tr(σdσd) with σd = σ − 1

3 tr(σ)I

= 3
2

{

(

2
3σxx − 1

3σyy − 1
3σzz

)2
+ σ2

xy + σ2
xz+

(

2
3σyy − 1

3σzz − 1
3σxx

)2
+ σ2

yz + σ2
yx +

(

2
3σzz − 1

3σxx − 1
3σyy

)2
+ σ2

zx + σ2
zy

}

=
(

σ2
xx + σ2

yy + σ2
zz

)

− (σxxσyy + σyyσzz + σzzσxx) + 2
(

σ2
xy + σ2

yz + σ2
zx

)

= σ2
y0

For plane stress (σ3 = 0), the yield curve is an ellipse in the σ1σ2-plane. The length of the

principal axes of the ellipse is
√

2σy0 and
√

1
3σy0.

σ2

σ1

Fig. 6.63 : Von Mises yield curve in two-dimensional principal stress space

The three-dimensional Von Mises yield criterion is the equation of a cylindrical surface in
three-dimensional principal stress space. Because hydrostatic stress does not influence yield-
ing, the axis of the cylinder coincides with the hydrostatic axis σ1 = σ2 = σ3.

In the Π-plane, the Von Mises criterion is a circle with radius
√

2
3σy0.
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σ1 = σ2 = σ3

30o

σ2σ1

σ3

σ1

σ2

σ3 σ1 = σ2 = σ3

√

2
3σy0

Fig. 6.64 : Von Mises yield surface in three-dimensional principal stress space and the

Π-plane

6.3.6 Beltrami-Haigh

According to the elastic limit criterion of Beltrami-Haigh,

yielding occurs when the total specific elastic energy W reaches a critical value.

W = Wt

W = W h + W d =
1

18K
tr2(σ) +

1

4G
σd : σd

=

(

1

18K
− 1

12G

)

(σ1 + σ2 + σ3)
2 +

1

4G
(σ2

1 + σ2
2 + σ2

3)

Wt =

(

1

18K
− 1

12G

)

σ2 +
1

4G
σ2 =

1

2E
σ2 =

1

2E
σy0

2

2E

(

1

18K
− 1

12G

)

(σ1 + σ2 + σ3)
2 +

2E

4G

(

σ2
1 + σ2

2 + σ2
3

)

= σ2
y0

The yield criterion contains elastic material parameters and thus depends on the elastic
properties of the material. In three-dimensional principal stress space the yield surface is an
ellipsoid. The longer axis coincides with (or is parallel to) the hydrostatic axis σ1 = σ2 = σ3.
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σ2

σ1

σ3
σ1 = σ2 = σ3

σ2

σ1

Fig. 6.65 : Beltrami-Haigh yield curve and surface in principal stress space

6.3.7 Mohr-Coulomb

A prominent difference in behavior under tensile and compression loading is seen in much
materials, e.g. concrete, sand, soil and ceramics. In a tensile test such a material may have
a yield stress σut and in compression a yield stress σuc with σuc > σut. The Mohr-Coulomb
yield criterion states that

yielding occurs when the shear stress reaches a limit value.

For a plane stress state with σ3 = 0 the yield contour in the σ1σ2-plane can be constructed
in the same way as has been done for the Tresca criterion.

The yield surface in the three-dimensional principal stress space is a cone with axis along
the hydrostatic axis.

The intersection with the plane σ3 = 0 gives the yield contour for plane stress.

σut
σuc

σuc

σ1

σ2

σut

σ1

σut
− σ2

σuc
= 1

Fig. 6.66 : Mohr-Coulomb yield curve in two-dimensional principal stress space
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σ1 = σ2 = σ3

30o

σ2σ1

σ3

−σ1

−σ2

−σ3
σ1 = σ2 = σ3

Fig. 6.67 : Mohr-Coulomb yield surface in three-dimensional principal stress space and the

Π-plane

6.3.8 Drucker-Prager

For materials with internal friction and maximum adhesion, yielding can be described by the
Drucker-Prager yield criterion. It relates to the Mohr-Coulomb criterion in the same way as
the Von Mises criterion relates to the Tresca criterion.

For a plane stress state with σ3 = 0 the Drucker-Prager yield contour in the σ1σ2-plane
is a shifted ellipse.

In three-dimensional principal stress space the Drucker-Prager yield surface is a cone
with circular cross-section.

√

2
3σd : σd +

6 sin(φ)

3 − sin(φ)
p =

6cos(φ)

3 − sin(φ)
C

σ2

σ1

Fig. 6.68 : Drucker-Prager yield curve in

two-dimensional principal stress space
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σ1 = σ2 = σ3

30o

σ2σ1

σ3

−σ1

−σ2

−σ3
σ1 = σ2 = σ3

Fig. 6.69 : Drucker-Prager yield surface in three-dimensional principal stress space and the

Π-plane

6.3.9 Other yield criteria

There are many more yield criteria, which are used for specific materials and loading condi-
tions. The criteria of Hill, Hoffman and Tsai-Wu are used for orthotropic materials. In these
criteria, there is a distinction between tensile and compressive stresses and their respective
limit values.

parabolic Drucker-Prager
(

3J2 +
√

3 βσy0J1

)

1
2

= σy0

Buyokozturk
(

3J2 +
√

3 βσy0J1 − 0.2J2
1

)

1
2

= σy0

Hill
σ2

11

X2
− σ11σ22

XY
+

σ2
22

Y 2
+

σ2
12

S2

Hoffman
(

1

Xt
− 1

Xc

)

σ11 +

(

1

Yt
− 1

Yc

)

σ22 +

(

1

XtXc

)

σ2
11 +

(

1

YtYc

)

σ2
22 +

(

1

S2

)

σ2
12 −

(

1

XtXc

)

σ11σ22 = 0

Tsai-Wu
(

1

Xt
− 1

Xc

)

σ11 +

(

1

Yt
− 1

Yc

)

σ22 +

(

1

XtXc

)

σ2
11 +

(

1

YtYc

)

σ2
22 +

(

1

S2

)

σ2
12 + 2F12 σ11σ22 = 0

with F 2
12 >

1

XtXc

1

YtYc
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6.4 Examples

Equivalent Von Mises stress

The stress state in a point is represented by the next Cauchy stress tensor :

σ = 3σ~e1~e1 − σ~e2~e2 − 2σ~e3~e3 + σ(~e1~e2 + ~e2~e1)

The Cauchy stress matrix is

σ =





3σ σ 0
σ −σ 0
0 0 −2σ





The Von Mises equivalent stress is defined as

σ̄V M =
√

3
2σd : σd =

√

3
2tr(σd ·σd) =

√

3
2tr(σdσd)

The trace of the matrix product is calculated first, using the average stress σm = 1
3tr(σ).

tr(σdσd) = tr([σ − σmI] [σ − σmI]) = tr(σ σ − 2σmI + σ2
mI) = tr(σ σ) − 6σm + 3σ2

m

= σ2
11 + σ2

22 + σ2
33 + 2σ2

12 + 2σ2
23 + 2σ2

13 − 2
3σ11 − 2

3σ22 − 2
3σ33 +

1
3σ2

11 + 1
3σ2

22 + 1
3σ2

33 + 2
3σ11σ22 + 2

3σ22σ33 + 2
3σ33σ11

Substitution of the given values for the stress components leads to

tr(σdσd) = 16σ2 → σ̄2
V M = 24σ2 → σ̄V M = 2

√
6σ

Equivalent Von Mises and Tresca stresses

The Cauchy stress matrix for a stress state is

σ =





σ τ 0
τ σ 0
0 0 σ





with all component values positive.
The Tresca yield criterion states that yielding will occur when the maximum shear stress
reaches a limit value, which is determined in a tensile experiment. The equivalent Tresca
stress is two times this maximum shear stress.

σ̄TR = 2τmax = σmax − σmin

The limit value is the one-dimensional yield stress σy0. To calulate σ̄TR, we need the prinipal
stresses, which can be determined by requiring the matrix σ − sI to be singular.
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det(σ − sI) = det





σ − s τ 0
τ σ − s 0
0 0 σ − s



 = 0 →

(σ − s)3 − τ2(σ − s) = 0 → (σ − s){(σ − s)2 − τ2} = 0 →
(σ − s)(σ − s + τ)(σ − s − τ) = 0 →
σ1 = σmax = σ + τ ; σ2 = σ ; σ3 = σmin = σ − τ

The equivalent Tresca stress is

σ̄TR = 2τ

so yielding according to Tresca will occur when

τ = 1
2 σy0

The equivalent Von Mises stress is expressed in the principal stresses :

σ̄V M =
√

1
2{(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2}

and can be calculated by substitution,

σ̄V M =
√

3τ2 =
√

3τ

Yielding according to Von Mises will occur when the equivalent stress reaches a limit value,
the one-dimensional yield stress σy0, which results in

τ = 1
3

√
3 σy0





APPENDICES



A Stiffness and compliance matrices

In chapter ?? the three-dimensional stiffness and compliance matrices have been derived for
various materials. Increasing microstructural lattice symmetry gave rise to a reduction of
the number of material constants. Starting from triclinic with no symmetry and character-
ized by 21 material constants, increased symmetry was seen for monoclinic (13 constants),
orthotropic (9), quadratic (6), transversal isotropic (5), cubic (3) and finally, isotropic, with
only 2 material constants.

In this appendix, we again present the material matrices for orthotropic, transversal
isotropic and fully isotropic material. The material constants will be expressed in engineering
constants, where we choose Young’s moduli, Poisson’s ratios and shear moduli.

In many engineering problems, the state of strain or stress is planar. Both for plane
strain and plane stress, only the strain and stress components in a plane have to be related
through a material law. Here we assume that this plane is the 12-plane. For plane strain
we than have ε33 = γ23 = γ31 = 0, and for plane stress σ33 = σ23 = σ31 = 0. The mate-
rial law for these planar situations can be derived from the linear elastic three-dimensional
stress-strain relation. This is done, first for the general orthotropic material law. The result
is subsequently specified in engineering parameters for orthotropic, transversal isotropic and
fully isotropic material.

A.1 General orthotropic material law

The general orthotropic material law is expressed by the stiffness matrix C and/or its inverse,
the compliance matrix S.

σ
˜

=

















σ11

σ22

σ33

σ12

σ23

σ31

















=

















A Q R 0 0 0
Q B S 0 0 0
R S C 0 0 0
0 0 0 K 0 0
0 0 0 0 L 0
0 0 0 0 0 M

































ε11

ε22

ε33

γ12

γ23

γ31

















= C ε
˜

ε
˜

=

















ε11

ε22

ε33

γ12

γ23

γ31

















=

















a q r 0 0 0
q b s 0 0 0
r s c 0 0 0
0 0 0 k 0 0
0 0 0 0 l 0
0 0 0 0 0 m

































σ11

σ22

σ33

σ12

σ23

σ31

















= C−1 σ
˜

= S σ
˜

The inverse of C can be expresses in its components.



a1

C−1 =
1

∆c

















BC − S2 −QC + RS QS − BR 0 0 0
−QC + RS AC − R2 −AS + QR 0 0 0
QS − BR −AS + QR AB − Q2 0 0 0

0 0 0 ∆c(1/K) 0 0
0 0 0 0 ∆c(1/L) 0
0 0 0 0 0 ∆c(1/M)

















with ∆c = ABC − AS2 − BR2 − CQ2 + 2QRS

As will be clear later, it will mostly be easier to start with the compliance matrix and calculate
the stiffness matrix by inversion.

S−1 =
1

∆s

















bc − s2 −qc + rs qs − br 0 0 0
−qc + rs ac − r2 −as + qr 0 0 0
qs − br −as + qr ab − q2 0 0 0

0 0 0 ∆s(1/k) 0 0
0 0 0 0 ∆s(1/l) 0
0 0 0 0 0 ∆s(1/m)

















with ∆s = abc − as2 − br2 − cq2 + 2qrs

Increasing material symmetry leads to a reduction in material parameters.

quadratic B = A ; S = R ; M = L;

transversal isotropic B = A ; S = R ; M = L ; K = 1
2(A − Q)

cubic C = B = A ; S = R = Q ; M = L = K 6= 1
2(A − Q)

isotropic C = B = A ; S = R = Q ; M = L = K = 1
2(A − Q)

The planar stress-strain laws can be derived either from the stiffness matrix C or from the
compliance matrix S. The plane strain state will be denoted by the index ε and the plane
stress state will be indicated with the index σ.

A.1.1 Plane strain

For a plane strain state with ε33 = γ23 = γ31 = 0, the stress σ33 can be expressed in the
planar strains ε11 and ε22. The material stiffness matrix C

ε
can be extracted directly from

C. The material compliance matrix S
ε

has to be derived by inversion.

ε33 = γ23 = γ31 = 0 → σ33 = Rε11 + Sε22



a2

σ
˜

=





σ11

σ22

σ12



 =





A Q 0
Q B 0
0 0 K









ε11

ε22

γ12



 =





Aε Qε 0
Qε Bε 0
0 0 K









ε11

ε22

γ12



 = C
ε
ε
˜

ε
˜

=





ε11

ε22

γ12



 =
1

AB − Q2









B −Q 0
−Q A 0

0 0
AB − Q2

K













σ11

σ22

σ12



 =





aε qε 0
qε bε 0
0 0 k









σ11

σ22

σ12



 = S
ε
σ
˜

Because the components of the three-dimensional compliance matrix S are most conveniently
expressed in Young’s moduli, Poisson’s ratios and shear moduli, this matrix is a good starting
point to derive the planar matrices for specific cases. The plane strain stiffness matrix C

ε
must then be determined by inversion.

ε33 = 0 = rσ11 + sσ22 + cσ33 → σ33 = −r

c
σ11 −

s

c
σ22

ε
˜

=





ε11

ε22

γ12



 =





a q 0
q b 0
0 0 k









σ11

σ22

σ12



 −





r
s
0





[ r

c

s

c
0

]





σ11

σ22

σ12





=
1

c





ac − r2 qc − rs 0
qc − sr bc − s2 0

0 0 kc









σ11

σ22

σ12



 =





aε qε 0
qε bε 0
0 0 k









σ11

σ22

σ12



 = S
ε
σ
˜

σ
˜

=





σ11

σ22

σ12



 =





aε qε 0
qε bε 0
0 0 k





−1 



ε11

ε22

γ12



 =
1

∆s







bc − s2 −qc + rs 0
−qc + rs ac − r2 0

0 0
∆s

k











ε11

ε22

ε12





with ∆s = abc − as2 − br2 − cq2 + 2qrs

=





Aε Qε 0
Qε Bε 0
0 0 K









ε11

ε22

ε12



 = C
ε
σ
˜

We can now derive by substitution :

σ33 = − 1

∆s
[(br − qs)ε11 + (as − qr)ε22]

A.1.2 Plane stress

For the plane stress state, with σ33 = σ23 = σ31 = 0, the two-dimensional material law can
be easily derived from the three-dimensional compliance matrix S

ε
. The strain ε33 can be

directly expressed in σ11 and σ22. The material stiffness matrix has to be derived by inversion.



a3

σ33 = σ23 = σ31 = 0 → ε33 = rσ11 + sσ22

ε
˜

=





ε11

ε22

γ12



 =





a q 0
q b 0
0 0 k









σ11

σ22

σ12



 =





aσ qσ 0
qσ bσ 0
0 0 k









σ11

σ22

σ12



 = S
σ
σ
˜

σ
˜

=





σ11

σ22

σ12



 =
1

ab − q2









b −q 0
−q a 0

0 0
ab − q2

k













ε11

ε22

γ12



 =





Aσ Qσ 0
Qσ Bσ 0
0 0 K









ε11

ε22

γ12



 = C
σ
ε
˜

We can derive by substitution :

ε33 =
1

ab − q2
[(br − qs)ε11 + (as − qr)ε22]

The same relations can be derived from the three-dimensional stiffness matrix C.

σ33 = 0 = Rε11 + Sε22 + Cε33 → ε33 = −R

C
ε11 −

S

C
ε22

σ
˜

=





σ11

σ22

σ12



 =





A Q 0
Q B 0
0 0 K









ε11

ε22

γ12



 −





R
S
0





[

R

C

S

C
0

]





ε11

ε22

γ12





=
1

C





AC − R2 QC − RS 0
QC − SR BC − S2 0

0 0 KC









ε11

ε22

γ12



 =





Aσ Qσ 0
Qσ Bσ 0
0 0 K









ε11

ε22

γ12



 = C
σ
ε
˜

ε
˜

=





ε11

ε22

γ12



 =





Aσ Qσ 0
Qσ Bσ 0
0 0 K





−1 



σ11

σ22

σ12



 =





aσ qσ 0
qσ bσ 0
0 0 k









σ11

σ22

σ12



 = S
σ
σ
˜

A.1.3 Plane strain/stress

In general we can write the stiffness and compliance matrix for planar deformation as a 3 × 3
matrix with components, which are specified for plane strain (p = ε) or plane stress (p = σ).

C
p

=





Ap Qp 0
Qp Bp 0
0 0 K



 ; S
p

=





ap qp 0
qp bp 0
0 0 k





The general relations presented before can be used to calculate the components of C
p

and/or

S
p

when components of the three-dimensional matrices C and/or S are known.

In the next sections the three-dimensional and planar material matrices are presented for
orthonormal, transversal isotropic and fully isotropic material.
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A.2 Linear elastic orthotropic material

For an orthotropic material 9 material parameters are needed to characterize its mechanical
behavior. Their names and formal definitions are :

Young’s moduli : Ei =
∂σii

∂εii

Poisson’s ratios : νij = −∂εjj

∂εii

shear moduli : Gij =
∂σij

∂γij

The introduction of these parameters is easily accomplished in the compliance matrix S.
Due to the symmetry of the compliance matrix S, the material parameters must obey the
three Maxwell relations.

S =

















E−1
1 −ν21E

−1
2 −ν31E

−1
3 0 0 0

−ν12E
−1
1 E−1

2 −ν32E
−1
3 0 0 0

−ν13E
−1
1 −ν23E

−1
2 E−1

3 0 0 0

0 0 0 G−1
12 0 0

0 0 0 0 G−1
23 0

0 0 0 0 0 G−1
31

















with
ν12

E1
=

ν21

E2
;

ν23

E2
=

ν32

E3
;

ν31

E3
=

ν13

E1
(Maxwell relations)

The stiffness matrix C can then be derived by inversion of S.

C =
1

∆s



















1−ν32ν23

E2E3

ν31ν23+ν21

E2E3

ν21ν32+ν31

E2E3
0 0 0

ν13ν32+ν12

E1E3

1−ν31ν13

E1E3

ν12ν31+ν32

E1E3
0 0 0

ν12ν23+ν13

E1E2

ν21ν13+ν23

E1E2

1−ν12ν21

E1E2
0 0 0

0 0 0 ∆sG12 0 0
0 0 0 0 ∆sG23 0
0 0 0 0 0 ∆sG31



















with ∆s =
1 − ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν21ν32ν13

E1E2E3

A.2.1 Voigt notation

In composite mechanics the so-called Voigt notation is often used, where stress and strain
components are simply numbered 1 to 6. Corresponding components of the compliance (and
stiffness) matrix are numbered accordingly. However, there is more to it than that. The
sequence of the shear components is changed. We will not use this changed sequence in the
following.

σ
˜

T = [σ11 σ22 σ33 σ12 σ23 σ31] = [σ1 σ2 σ3 σ6 σ4 σ5]

ε
˜
T = [ε11 ε22 ε33 γ12 γ23 γ31] = [ε1 ε2 ε3 ε6 ε4 ε5]
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















ε1

ε2

ε3

ε4

ε5

ε6

















=

















S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

































σ1

σ2

σ3

σ4

σ5

σ6

















A.2.2 Plane strain

For plane strain the stiffness matrix can be extracted from the three-dimensional stiffness
matrix. The inverse of this 3x3 matrix is the plane strain compliance matrix.

σ33 = ν13
E3

E1
σ11 + ν23

E3

E2
σ22

S
ε

=





1−ν31ν13

E1
−ν31ν23+ν21

E2
0

−ν13ν32+ν12

E1

1−ν32ν23

E2
0

0 0 1
G12





C
ε

= S−1
ε

=
1

∆s





1−ν32ν23

E2E3

ν31ν23+ν21

E2E3
0

ν13ν32+ν12

E1E3

1−ν31ν13

E1E3
0

0 0 ∆sG12





with ∆s =
1 − ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν21ν32ν13

E1E2E3

σ33 =
1

∆s

{

ν12ν32 + ν13

E1E2
ε11 +

ν21ν13 + ν23

E1E2
ε22

}

A.2.3 Plane stress

For plane stress the compliance matrix can be extracted from the three-dimensional compli-
ance matrix. The inverse of this 3x3 matrix is the plane strain stiffness matrix.

ε33 = − ν13E
−1
1 σ11 − ν23E

−1
2 σ22

S
σ

=





E−1
1 −ν21E

−1
2 0

−ν12E
−1
1 E−1

2 0

0 0 G−1
12





C
σ

= S−1
σ

=
1

1 − ν21ν12





E1 ν21E1 0
ν12E2 E2 0

0 0 (1 − ν21ν12)G12





ε33 = − 1

1 − ν12ν21
{(ν12ν23 + ν13)ε11 + (ν21ν13 + ν23)ε22}
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A.3 Linear elastic transversal isotropic material

Considering an transversally isotropic material with the 12-plane isotropic, the Young’s modu-
lus Ep and the Poisson’s ratio νp in this plane can be measured. The associated shear modulus

is related by Gp =
Ep

2(1 + νp)
. In the perpendicular direction we have the Young’s modulus

E3, the shear moduli G3p = Gp3 and two Poisson ratios, which are related by symmetry :
νp3E3 = ν3pEp.

S =



















E−1
p −νpE

−1
p −ν3pE

−1
3 0 0 0

−νpE
−1
p E−1

p −ν3pE
−1
3 0 0 0

−νp3E
−1
p −νp3E

−1
p E−1

3 0 0 0

0 0 0 G−1
p 0 0

0 0 0 0 G−1
p3 0

0 0 0 0 0 G−1
3p



















with
νp3

Ep
=

ν3p

E3

C = S−1 =
1

∆s





















1−ν3pνp3

EpE3

ν3pνp3+νp

EpE3

νpν3p+ν3p

EpE3
0 0 0

νp3ν3p+νp

EpE3

1−ν3pνp3

EpE3

νpν3p+ν3p

EpE3
0 0 0

νpνp3+νp3

EpEp

νpνp3+νp3

EpEp

1−νpνp

EpEp
0 0 0

0 0 0 ∆sGp 0 0
0 0 0 0 ∆sGp3 0
0 0 0 0 0 ∆sG3p





















with ∆s =
1 − νpνp − νp3ν3p − ν3pνp3 − νpνp3ν3p − νpν3pνp3

EpEpE3

A.3.1 Plane strain

The plane strain stiffness matrix can be extracted from the three-dimensional stiffness matrix.
The inverse of this 3x3 matrix is the plane strain compliance matrix.

σ33 =
E3νp3

Ep

(σ11 + σ22) = ν3p(σ11 + σ22)

S
ε

=







1−ν3pνp3

Ep
−ν3pνp3+νp

Ep
0

−νp3ν3p+νp

Ep

1−ν3pνp3

Ep
0

0 0 1
Gp







C
ε

= S−1
ε

=
1

∆s







1−ν3pνp3

EpE3

ν3pνp3+νp

EpE3
0

νp3ν3p+νp

EpE3

1−ν3pνp3

EpE3
0

0 0 ∆sGp







with ∆s =
1 − νpνp − νp3ν3p − ν3pνp3 − νpνp3ν3p − νpν3pνp3

EpEpE3
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σ33 =
1

∆s

νp3(νp + 1)

E2
p

(ε11 + ε22)

A.3.2 Plane stress

For plane stress the compliance matrix can be extracted directly from the three-dimensional
compliance matrix. The inverse of this 3x3 matrix is the plane strain stiffness matrix.

ε33 = − νp3

Ep
(σ11 + σ22)

S
σ

=





E−1
p −νpE

−1
p 0

−νpE
−1
p E−1

p 0

0 0 G−1
p





C
σ

= S−1
σ

=
1

1 − νpνp





Ep νpEp 0
νpEp Ep 0

0 0 (1 − νpνp)Gp





ε33 = − νp3

1 − νp
(ε11 + ε22)

A.4 Linear elastic isotropic material

The linear elastic material behavior can be described with the material stiffness matrix C or
the material compliance matrix S. These matrices can be written in terms of the engineering
elasticity parameters E and ν.

S =
1

E

















1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

















C = S−1 =
E

(1 + ν)(1 − 2ν)
















1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2(1 − 2ν) 0 0
0 0 0 0 1

2(1 − 2ν) 0
0 0 0 0 0 1

2(1 − 2ν)
















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A.4.1 Plane strain

σ33 = ν(σ11 + σ22)

S
ε

=
1 + ν

E





1 − ν −ν 0
−ν 1 − ν 0
0 0 2





C
ε

= S−1
ε

=
E

(1 + ν)(1 − 2ν)





1 − ν ν 0
ν 1 − ν 0
0 0 1

2(1 − 2ν)





σ33 =
E

(1 + ν)(1 − 2ν)
ν(ε11 + ε22)

It is immediately clear that problems will occur for ν = 0.5, which is the value for incom-
pressible material behavior.

A.4.2 Plane stress

ε33 = − ν

E
(σ11 + σ22)

S
σ

=
1

E





1 −ν 0
−ν 1 0
0 0 2(1 + ν)





C
σ

= S−1
σ

=
E

1 − ν2





1 ν 0
ν 1 0
0 0 1

2(1 − ν)





ε33 = − ν

1 − ν
(ε11 + ε22)
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